УДК 665.658.68

РЕГЕНЕРАЦИЯ ПРЕКУРСОРА КАТАЛИЗАТОРА ГИДРОКОНВЕРСИИ СМЕСИ ГУДРОНА И ПОЛИМЕРНЫХ ОТХОДОВ

© 2024 г. Х. М. Кадиев¹, М. Я. Висалиев^{1,*}, Л. А. Зекель¹, А. Е. Батов¹, А. У. Дандаев¹, Н. А. Кубрин¹

¹Институт нефтехимического синтеза им. А. В. Топчиева РАН, Москва, 119991 Россия *E-mail: visaliev@ips.ac.ru

Поступила в редакцию 3.06.2024 После доработки 31.08.2024 Принята к публикации 02.12.2024

Изучен способ регенерации прекурсора катализатора процесса гидроконверсии, включающий выделение из вакуумного остатка гидрогенизата методом фильтрации концентрата катализатора, его термическую обработку с получением зольного остатка, выщелачивание соединений Мо и других металлов из зольного остатка действием аммиачного раствора и азотной кислоты. Рентгенофазовый анализ показал, что после окисления концентрата катализатора в получаемом зольном остатке идентифицируются как индивидуальный оксид молибдена (MoO₃), так и смеси «смешанных» двойных (NiMoO₄, V_2 MoO₈, Ni V_2 O₆, Na_{0.76} V_6 O₁₅) и тройных оксидов (Fe₄ V_2 Mo₃O₂₀) в виде сплавов. Выявлена эффективность предварительной обработки зольного остатка 65%-й HNO₃ с последующим воздействием на суспензию смесью, содержащей 10% NH₄OH и 5% (NH₄)₂CO₃; при этом до 88–90% соединений Мо извлекаются в получаемый раствор прекурсора катализатора.

Ключевые слова: гидроконверсия; гудрон; полимеры; прекурсор катализатора; концентрат катализатора; окисление; зольный остаток; металлы; молибден; выщелачивание

DOI: 10.56304/S2414215824020047; EDN: NDKELE

Дисульфид молибдена известен как основной компонент катализаторов, используемых в процессах переработки нефти, благодаря высокой каталитической активности в реакциях гидрообессеривания и подавления коксообразования. Выполненные в последние годы исследования позволили установить эффективность суспензий наноразмерных частиц сульфидов Мо в сларри-процессах гидроконверсии тяжелого нефтяного сырья (остатков дистилляции нефти, битумов, тяжелых нефтей) [1, 2]. Применение суспензионной формы высокодисперсных наноразмерных частиц MoS₂ обеспечивает максимальную высокую скорость генерации активного водорода и деактивации промежуточных свободнорадикальных фрагментов, тем самым подавляет образование кокса, увеличивает общую конверсию и повышает выход дистиллятных фракций. Суспензионный катализатор в сларри-процессах позволяет перерабатывать сырье с высоким содержанием серы, смол, асфальтенов и соединений металлов.

Очевидные преимущества гидроконверсии сырья с суспензионным катализатором способствовали

интенсивному развитию технологии и промышленному внедрению таких процессов. Эксплуатируются несколько промышленных установок, на которых гидроконверсию тяжелого нефтяного сырья (ТНС) проводят в присутствии дисперсных каталитических систем, содержащих дисульфид молибдена [3–5].

Установлено, что использование суспензий каталитических систем, содержащих сульфид молибдена, при гидрогенизационной переработке твердых видов органического сырья (ископаемых углей, сланцевой смолы, древесной биомассы) позволяет существенно снизить давление водорода и повысить выход дистиллятных фракций — сырья для производства моторных топлив [6, 7].

В большинстве исследований, а также в процессах, реализованных на пилотных и промышленных установках, содержание Мо в реакционной зоне обычно не превышает 0.1% Мо. Однако даже при таком малом расходе катализатора учитывая возможные объемы переработки сырья, потребуется количество молибдена, сопоставимое с масштабами его добычи. В большинстве исследований и

патентов вопросы обеспечения сларри-процессов соединениями молибдена не рассматриваются, хотя это чрезвычайно важно для оценки эффективности разрабатываемых технологий. В нескольких запатентованных процессах переработки ТНС включены операции, позволяющие сократить расход молибдена. Так в процессе гидрокрекинга вакуумных остатков компании ENI (Eni Slurry Technology) с целью повышения глубины конверсии и снижения расхода соединений молибдена часть высококипящего остатка гидрокрекинга, содержащая катализатор, возвращается в процесс и смешивается со свежим сырьем, поступающим в реактор [3].

В процессе многократной рециркуляции вакуумного остатка дистилляции гидрогенизата в нем накапливаются крупные частицы кокса, включающие MoS₂, соединения ванадия и никеля. Так, по данным исследования [8] при гидроконверсии вакуумного остатка в присутствии 0.06% дисперсного молибденового катализатора (маслорастворимый прекурсор — октоат молибдена вводили в сырье) после четырех циклов рециркуляции вакуумного остатка выход кокса составил 8%, частицы кокса имели размер до 100 мкм. Кокс содержал около 90% от вводимого количества молибдена, при этом катализатор полностью дезактивировался. Содержащиеся в рециркулирующем остатке частицы кокса с катализатором можно отделить от жидкой фазы методами центрифугирования или фильтрации [8]. Для дальнейшей переработки твердых продуктов гидроконверсии, состоящих из твердых относительно крупных частиц кокса, можно использовать процесс окисления кокса воздухом с последующей гидрометаллургической переработкой остатка окисления, аналогично технологии, используемой при извлечении Мо из молибденовой руды [9].

Схема, включающая рециркуляцию и регенерацию прекурсора катализатора, использована в процессе получения моторных топлив из углей методом гидрогенизации в присутствии суспензии наноразмерных частиц молибдена. Процесс был разработан в СССР, в Институте горючих ископаемых (ИГИ) [6, 7]. Сжигание высококипящего остатка гидрогенизации угля проводили при температуре выше 1600-1700°С в циклонной печи с жидким шлакоудалением. В условиях сжигания образующийся оксид молибдена переходил в паровую фазу и вместе дымовыми газами покидал зону горения. Такой температурный режим сжигания обеспечивал 97%-е отделение молибдена от минеральных компонентов угля. Из зольного уноса, уловленного из дымовых газов, молибден извлекали раствором, содержащим аммиак и карбонат аммония [6]. Следует отметить, что метод прямого сжигания остатка вакуумной дистилляции гидрогенизата для регенерации прекурсора катализатора недостаточно эффективен, поскольку приводит к потере части органического сырья и создает экологические проблемы, обусловленные необходимостью очистки больших объемов дымовых газов от соединений серы, азота, а также создания системы улавливания высокодисперсных частиц, содержащих соединения молибдена [10]. В связи с этим из остатка гидроконверсии целесообразно извлечь концентрат нерастворимых в органическом растворителе твердых частиц, содержащих молибден.

В исследованиях [11] по извлечению молибдена из отработанного дисперсного катализатора из кокса парового каталитического крекинга тяжелой нефти были изучены методы сжигания в кипящем и неподвижном слое частиц кокса. Сжигание в кипящем слое не позволило полностью удалить углерод из-за выноса мелких частиц кокса из зоны горения. Более эффективным оказалось окисление в неподвижном слое кокса. Для предотвращения сублимации МоО₃ и частичной потери молибдена, температура окисления не должна превышать 750°С [11, 12].

Таким образом, регенерация прекурсора молибденового катализатора в сларри-процессах гидроконверсии органического сырья должна включать стадии концентрирования металлов, последующего окисления концентрата и гидрометаллургической обработки зольного остатка.

В последние годы актуальность приобретает проблема химической переработки органических полимерных отходов (ПО) с получением жидких углеводородных фракций, которые могут быть использованы в дальнейшем для получения ценных продуктов нефтехимии и моторных топлив. Ранее было показано, что гидроконверсию с использованием дисперсного молибденового катализатора можно успешно использовать для получения дистиллятных фракций из ПО [13]. Учитывая ресурсы и возможные масштабы переработки ПО методом гидроконверсии необходимо предусматривать регенерацию прекурсора катализатора. В связи с этим целью настоящего исследования являлось изучение регенерации прекурсора катализатора из остатков гидроконверсии смеси ПО и вакуумного остатка дистилляции нефти.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве компонентов сырья гидроконверсии использовали смесь ПО, содержащую 35% полипропилена; 30% полиэтилена высокого давления; 30% полиэтилена низкого давления и 5% шинной резины. Прекурсор катализатора парамолибдат аммония

120 KAДИЕВ X. М. и др.

(ГОСТ 3765-78) растворяли в дистиллированной воде и эмульгировали в гудроне при 80°С в течение 40 мин с использованием кавитационного диспергатора. В качестве гудрона использовали гудрон, полученный с Нижнекамского нефтеперерабатывающего завода, с содержанием фракций выше 500°С — 91.6 мас.%, серы 3.3 мас.% и металлов: V — 230 г/т и Ni — 78 г/т. Полученную эмульсию смешивали с предварительно измельченными до размера 3.0 мм ПО. Приготовленная сырьевая смесь содержала 50% ПО и 50% гудрона с эмульгированным прекурсором катализатора.

Гидроконверсию смеси ПО и гудрона проводили в автоклаве по методике, описанной авторами в работе [14], при следующих условиях: температура реакции — 440°С; давление водорода — 7.0 МПа; расход $H_2 = 20$ нл/ч; прекурсор катализатора — парамолибдат аммония с содержанием Mo = 0.05% в расчете на сырье. Длительность выдержки при рабочих условиях — 2.0 ч. Продукты гидроконверсии исследовали по методике, изложенной в [13].

Для проведения исследований по регенерации прекурсора использовали остаток вакуумной дистилляции гидрогенизата (фр. выше 500°С) смеси гудрона и полимерных отходов, состав и свойства которого приведены в табл. 1.

Выделение концентрата катализатора в виде нерастворимых в толуоле твердых частиц из остатка вакуумной дистилляции гидрогенизата проводили методом фильтрации. Остаток гидрогенизата смешивали с толуолом (марка «х.ч.», ТУ 2631-020-44493179-98) в стеклянной емкости, оборудованной перемешивающим устройством при массовом соотношении остаток гидрогенизата: толуол 1:4, в течение 40 мин и температуре 80-90°С. Суспензию фильтровали под вакуумом на воронке Бюхнера через бумажный фильтр («синяя лента»). Остаток на фильтре промывали дополнительным количеством толуола до тех пор, пока капли, стекающие в колбу, не становились прозрачными. Фильтр высушивали в сушильном шкафу при температуре 110-120°C и взвешивали с точностью до 0.001 г. По разности масс фильтра определяли выход концентрата катализатора.

Зольный продукт получали в лабораторных условиях сжиганием в муфельной печи выделенного концентрата катализатора при определенных ранее [14] оптимальных параметрах: температура сжигания 550°С, продолжительность термообработки 4 ч. Подачу воздуха в камеру сжигания в муфельной печи осуществляли через специально смонтированную трубку. Расход воздуха составлял 30 нл/ч на 20 г сжигаемого концентрата катализатора, что обеспечивало избыток кислорода и, соответственно, создавало необходимые условия получения зольного

Таблица 1. Состав и свойства вакуумного остатка гидроконверсии смеси ПО и гудрона

Наименование показателей качества, единицы измерения	Значение показателей
Плотность при 20°С, кг/м ³	1012
Температура застывания, °С	105
Вязкость динамическая, Пас при темпе-	
ратуре:	
100°C	41.2
120°C	4.13
140°C	0.71
Коксуемость по Конрадсону, мас.%	43.3
Групповой состав, мас.%:	
Парафино-нафтеновые углеводороды	9.0
Ароматические углеводороды	27.5
Смолы	31.4
Асфальтены	32.2
Содержание элементов, мас.%	
C	88.2
Н	4.17
S	2.96
N	1.23
O	3.04
Mo	0.206
V	0.143
Ni	0.058
Содержание нерастворимых в толуоле ве-	1.37
ществ, мас.%	

остатка, не содержащего в составе неокисленный углерод.

Исследование фазового состава выделенного концентрата катализатора и зольных остатков проводили на рентгенофазовом дифрактометре Rotaflex RU-200 (Rigaku, Япония), работающем при параметрах источника 50 кВ, 160 мА. Длина волны монохромного излучения составляла 1.542 Å. Для монохроматизации использовали графитовый кристалл-монохроматор на отраженном от образца пучке. Источник оснащен горизонтальным гониометром Rigaku D/Max-RC, θ-2θ-сканирование проводили по схеме Брэгга-Брентано. Диапазон измерения углов дифракции 0°-80° по 20, измерение велось в режиме непрерывного сканирования со скоростью 2 /мин и шагом 0.04°. Обработку экспериментальных дифрактограмм проводили с помощью специализированной программы MDI Jade 6.5. Для идентификации фаз использовали международную электронную базу дифракционных данных ICDD PDF-2.

Выщелачивание соединений молибдена, ванадия и никеля проводили в помещенной в термостат плоскодонной колбе объемом 100 мл, оборудованной пропеллерной мешалкой. В качестве реагентов для выщелачивания использовали водные растворы аммиака (ГОСТ 3760-79), карбоната аммония (ГОСТ 3762-78), азотной кислоты (ГОСТ 4461-77). К 1 г зольного продукта добавляли 4 мл выщелачивающего раствора. Выщелачивание проводили при 55°С в течение 1 ч.

Полученную горячую суспензию отфильтровывали на воронке Бюхнера на бумажном фильтре («синяя лента»). Осадок на фильтре промывали 3 раза 20 мл выщелачивающего реагента. Основной фильтрат и промывной раствор объединяли и переносили в мерную колбу объемом 150 мл. Фильтрат доводили до метки дистиллированной водой. От раствора в мерной колбе отбирали пробы на количественное определение Мо, V, Ni. После сушки при 110°С твердого остатка на фильтре от него снова отбирали пробы на количественное определение Мо, V, Ni.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выделение концентрата катализатора из остатка гидроконверсии. Выход концентрата катализатора — твердого продукта фильтрации смеси вакуумного остатка и толуола, составил 1.37 мас.% от массы вакуумного остатка (табл. 2).

Из сопоставления данных содержания Мо в исходном остатке гидроконверсии (табл. 1) и концентрате катализатора (табл. 2) видно, что содержание Мо в концентрате возросло почти в 70 раз. Молибден количественно перешел в концентрат. В концентрате помимо молибдена присутствуют соединения V и Ni, которые содержались в исходном гудроне.

Таблица 2. Элементный состав концентрата катализатора

Содержание, мас.%							
Mo	V	Ni	С	Н	S	N	Прочие
15.4	10.44	4.23	59.5	4.10	3.34	1.20	2.17

На рис. 1 приведена рентгенограмма концентрата катализатора.

По данным РФА молибден в концентрате присутствует в форме MoS_2 . Помимо рефлексов MoS_2 на рентгенограмме присутствует рефлекс (26° – 27° $2\Theta^\circ$), соответствующий графитизированным продуктам уплотнения, что согласуется с высоким содержанием углерода в образце (табл. 2).

Окисление твердого углеродсодержащего продукта. Окисление молибденового концентрата проводили с целью удаления из образцов углерода и окисления MoS₂ до MoO₃, растворимого как в кислотах, так и в аммиачном растворе. Процесс проводили с использованием в качестве окислителя воздуха. При выборе условий окисления ограничивали максимальную температуру окисления не выше 600°С для исключения потерь Мо, поскольку при температурах выше 600°С могут образовываться летучие соединения Мо (например, H₂MoO₄), что приведет к частичной потере Мо в получаемом зольном остатке [14].

Основные контролируемые параметры окисления — температура сжигания, время выдержки концентрата катализатора в зоне сжигания (окисления) и объемный расход воздуха. В зависимости от температуры окисления металлы, связанные с органической матрицей, образуют разные соединения, в том числе и летучие. Также от температуры

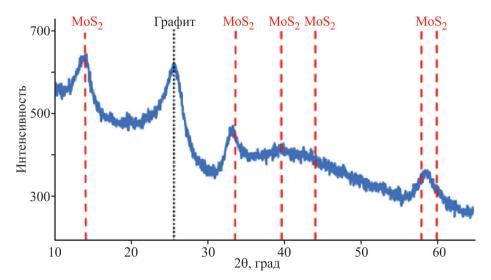


Рис. 1. Рентгенограмма выделенного концентрата катализатора.

122 КАДИЕВ X. М. и др.

окисления при прочих одинаковых условиях (время выдержки и объема подаваемого воздуха в качестве окислителя) зависит выход зольного остатка (3O) и содержание в нем не окисленного углерода, который ингибирует процесс перевода оксидов Мо в раствор. Таким образом, с учетом ранее полученных данных по разработке условий лабораторного сжигания остатка гидроконверсии [14], исследование окисления выделенного концентрата катализатора из фр. > 500°С гидроконверсии проводили при следующих условиях: температура 400–600°C; коэффициент стехиометрического избытка воздуха (α) \geq 1.2; масса навески 20 г; время выдержки образца исходного концентрата катализатора в зоне окисления 30–180 мин (табл. 3).

Для характеристики полноты удаления органического вещества из концентрата катализатора использовали показатель зольности (A^d) , определяемый по уравнению:

$$A^{d} = (M_{2}/M_{1}) \cdot 100$$
, mac.%, (1)

где M_1 — масса исходной взятой навески выделенного концентрата катализатора; M_2 — масса остатка термообработки (окисления) при определенной температуре и длительности обработки.

О полноте протекания окисления органических соединений в концентрате катализатора при его термическом окислении можно судить по достижению постоянства изменения массы окисляемого продукта; однако, окончательный вывод о полном или частичном протекании реакций можно сделать только после определения элементного состава остатка окисления.

Как видно из табл. 3, наименьший выход 3О составляет 5.6 мас.%, который соответствует 100%-ной зольности образца. Согласно полученным данным, содержание непревращенного органического

вещества в 3О зависит от температуры и времени окисления (рис. 2).

Из рис. 2 видно, что полное окисление образца наблюдается при следующих условиях: при 550° C — в течение 180 мин; 575° C — 120 мин; 600° C — 90 мин (см. также табл. 4). В получаемых при этих температурах с указанным временем выдержки 30 по данным элементного анализа остаточное содержание углерода не превышает 0.5 мас.%.

Полученные результаты позволяют оценить кинетические показатели процесса окисления концентрата воздухом. На рис. 3 представлена зависимость натурального логарифма содержания углерода в $3O - \ln(C_{\text{ODF}})$ от продолжительности окисления (τ) .

На начальном этапе окисления зависимости $ln(C_{opr})$ от τ линейны ($R^2 > 98\%$), что указывает на первый порядок реакции. Линейный характер зависимости сохраняется до содержания углерода в 3О около 15%. При дальнейшем окислении скорость процесса постепенно снижается, что обусловлено, по-видимому, возникновением диффузионного барьера, связанного с образованием сплава минерального вещества. В табл. 4 приведены значения констант скорости (k) окисления концентрата и рассчитанная из этих значений энергия активации реакции окисления (E_a). Следует отметить, что полученные значения энергий активации ниже, чем при окислении графита или сажи, которые обычно находятся в пределах 44–200 кДж/моль [15]. Наблюдаемое отклонение обусловлено присутствием в образце оксидных форм Mo, V, Ni, Fe, являющихся катализаторами процессов окисления органического вещества. Например, увеличение содержания ванадия в нефтяном коксе с 0.05 до 0.3% приводит к увеличению скорости его окисления в 8 pas [16].

В соответствии с полученными экспериментальными данными оптимальные параметры окисления

Таблица 3. Выход зольного остатка (3O) в зависимости от температуры окисления и времени выдержки концентрата катализатора в зоне окисления

	Время выдержки, мин					
Температура окисления, °С	30	60	90	120	150	180
	Выход 3О, мас.%					
400	75.5	53.4	37.7	27.5	22.3	12.5
450	66.3	41.1	28.7	16.0	13.5	9.8
500	52.7	28.3	25.5	23.3	14.6	7.1
525	47.5	19.2	13.0	8.8	7.3	6.6
550	27.3	11.1	8.4	6.1	5.8	5.6
575	13.6	7.2	5.9	5.6	5.6	5.6
600	7.9	6.3	5.6	5.6	5.6	5.6

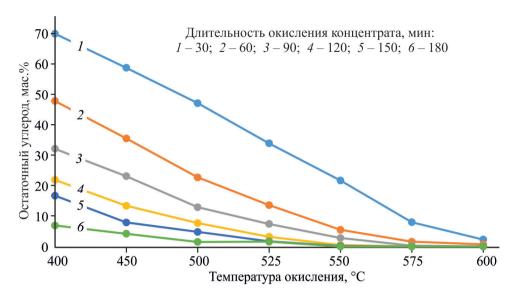


Рис. 2. Зависимость содержания остаточного углерода в 3О от условий окисления концентрата.

выделенного концентрата катализатора в лабораторных условиях составляют: температура 575–600°С; время выдержки концентрата катализатора в зоне окисления 60–180 мин; коэффициент стехиометрического избытка воздуха >1.2.

Из-за низкой температуры плавления оксидов молибдена и ванадия (801 и 680° С соответственно), 3О состоит из мелких оплавленных частиц. По данным рентгенофлуоресцентной спектроскопии 3О содержит, мас.%: Мо — 48.1; V — 16.4; Ni — 7.82; Fe — 3.81; Zn — 0.64; Na — 0.3; Si — 0.18; Al — 0.13 и Ca — 0.1.

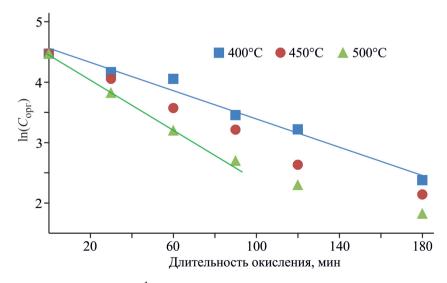

Расчет материального баланса показывает, что Mo, V и Ni при параметрах сжигания (температура 600°С; время выдержки 90 мин при коэффициенте

Таблица 4. Кинетические характеристики окисления молибденового концентрата

Температура	<i>l</i> 1	$E_{ m a}$, кДж/моль		
окисления, °С	<i>k</i> , мин ^{−1}	400–450°C	450–500°C	
400	0.0117	10.97	42.6	
450	0.0134			
500	0.0212			

стехиометрического избытка воздуха 1.2) количественно переходят в 30.

Выщелачивание соединений молибдена из 3О. Выбор используемых реагентов, условий извлечения соединений Мо из полученного 3О во многом

Рис. 3. Зависимость натурального логарифма содержания углерода в зольном остатке от продолжительности и температуры окисления.

124 КАДИЕВ X. М. и др.

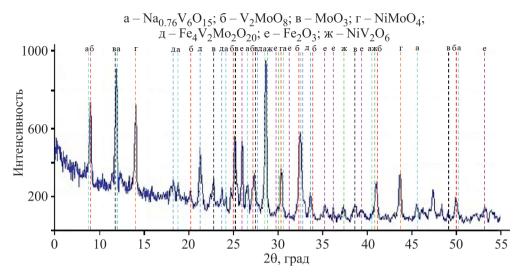


Рис. 4. Рентгенограмма зольного остатка.

зависит от форм соединений примесей металлов в окисленном продукте.

Рентгенограмма 3O (рис. 4) указывает на наличие в нем смеси индивидуальных соединений (MoO_3 и Fe_2O_3), «смешанных» двойных ($NiMoO_4$, V_2MoO_8 , NiV_2O_6 , $Na_{0.76}V_6O_{15}$) и тройных оксидов ($Fe_4V_2Mo_3O_{20}$).

Оксид молибдена растворим в щелочных и кислых средах. Учитывая, что в процессах гидроконверсии органического сырья с использованием водорастворимых прекурсоров обычно применяют парамолибдат аммония, исследования выполняли в присутствии водного раствора аммиака и карбоната аммония. Также, в одном из опытов для повышения извлечения соединений Мо в раствор, ЗО предварительно обрабатывали 65%-м раствором азотной кислоты при массовом соотношении ЗО: HNO₃, равном 1: 1. Результаты исследований приведены в табл. 5.

В оп. 1-4 в качестве реагентов использовали растворы аммиака и карбоната аммония, в оп. 5 30 сначала обрабатывали концентрированной HNO₃ и затем вводили избыток аммиака и карбонат аммония. При действии водного раствора аммиака на 3О степень извлечения соединений Мо в раствор не превышает 65-70 мас.%. Увеличение концентрации аммиака с 10 до 15% практически не оказывает существенного влияния, что вероятнее всего связано с частичным присутствием в 30 Мо в виде двойных и тройных смешанных оксидов (табл. 5). При добавлении в 10%-й раствор аммиака 5% карбоната аммония степень извлечения Мо в раствор прекурсора повышается до 76–77%; дальнейшее увеличение содержания карбоната аммония (до 10%) степень извлечения Мо в раствор практически не меняет. Видимо, добавление карбоната аммония (5–10%) в 10%-й раствор аммиака способствует частичному разложению некоторых молибдатов (например,

Таблица 5. Результаты исследований по выщелачиванию соединений молибдена из зольного остатка. Температура опыта — 55° C, длительность выщелачивания — 1 ч

Опыт №	Реагент	Соотношение Т/Ж	Степень извлечения Мо в p-p*, мас.%
1	5% NH ₄ OH	1/4	65.2–66.4
2	10% NH ₄ OH		68.3–68.8
3	15% NH ₄ OH		68.5–69.4
4	10% NH ₄ OH + 5%(NH ₄) ₂ CO ₃		75.5–76.8
5	10% NH ₄ OH + 10%(NH ₄) ₂ CO ₃		75.5–76.6
6	65% HNO ₃ 10% NH ₄ OH + 5% (NH ₄) ₂ CO ₃	1/1 1/4	88.3–90.0

^{*} Приведен диапазон значений, поскольку степень извлечения Мо рассчитывалась по результатам анализов содержания Мо в полученном растворе и твердом остатке на фильтре.

NiMoO₄); при этом остаются более стойкие соединения (смешанные молибдаты Fe, V, Ni). На основе известных данных о химических свойствах соединений, присутствующих в 3О, протекающие процессы выщелачивания 3О растворами аммиака и карбоната аммония можно описать уравнениями:

$$MoO_3 + 2NH_4OH \rightarrow (NH_4)_2MoO_4 + H_2O,$$
 (1)

$$NiMoO_4 + (NH_4)_2CO_3 \rightarrow$$

$$\rightarrow (NH_4)_2MoO_4 + NiCO_3 \downarrow + H_2O,$$
(2)

$$V_2MoO_8 + 4NH_4OH \rightarrow$$

 $\rightarrow 2(NH_4)VO_3 + (NH_4)_2MoO_4 + 4H_2O_3$ (3)

$$NiV_2O_6 + 2NH_4OH \rightarrow$$

$$\rightarrow NiO\downarrow + 2(NH_4)VO_3 + H_2O.$$
(4)

В 3О присутствуют оплавленные частицы, содержащие железо, например, $Fe_4V_2Mo_3O_{20}$. Подобные соединения практически не разрушаются в растворах аммиака и карбоната аммония. В этом случае более эффективно использование азотной кислоты, которая растворяет соединения железа, разрушает структуру частицы. В оп. 5 3О предварительно обрабатывали 65%-м HNO₃ в течение 30 мин. Далее, в полученную суспензию 3О и HNO₃ добавляли смесевой раствор, содержащий 10% аммиака и 5% карбоната аммония, и перемешивали в течение 60 мин при температуре 55°C. В результате обработки азотной кислотой образуются оксиды ванадия и молибдена:

$$Fe_4V_2Mo_3O_{20} + 12HNO_3 \rightarrow \rightarrow 4Fe(NO_3)_3 + V_2O_5\downarrow + 3MoO_3\downarrow.$$
 (5)

Аналогичным образом азотная кислота действует на фазы, включающие никель. В результате образуются не растворимые в HNO_3 оксиды молибдена и ванадия, нитраты никеля и железа. Для перевода молибдена в молибдат аммония к продукту, полученному после обработки азотной кислотой, добавляли избыток аммиака и карбонат аммония. В результате происходит растворение MoO_3 в соответствии с уравнением (1). Такой прием позволил повысить извлечение молибдена в раствор до 88-90%.

ВЫВОДЫ

Исследования показали, что регенерацию прекурсора катализатора в процессе гидроконверсии смеси гудрона с ПО целесообразно проводить в три стадии:

— экстракция (извлечение) твердых частиц из вакуумного остатка фракционирования гидрогенизата с получением концентрата Мо;

- окисление концентрата Мо, содержащего MoS_2 и кокс, воздухом в неподвижном слое при температуре 575–600°C с получением зольного остатка, не содержащего неокисленный углерод;
- последовательное выщелачивание ЗО растворами азотной кислоты и смеси аммиака и карбоната аммония, обеспечивающее 88–90%-е извлечение молибдена в форме молибдата аммония.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИНХС РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Х. М. Кадиев является членом редколлегии журнала «Наногетерогенный катализ». Авторы заявляют об отсутствии других конфликтов интересов, требующих раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Кадиев Хусаин Магамедович, д.х.н.

ORCID: https://orcid.org/0000-0001-8705-114X

Висалиев Мурат Яхьяевич, к.х.н. ORCID: https://orcid.org/0000-0002-4336-8599

Зекель Леонид Абрамович, к.т.н.

ORCID: https://orcid.org/0000-0003-3336-5367 Батов Александр Евгеньевич, к.х.н.

ORCID: https://orcid.org/0000-0003-0802-4077 Дандаев Асхаб Умалтович, к.х.н.

ORCID: https://orcid.org/0000-0002-6644-9287 Кубрин Никита Александрович

ORCID: https://orcid.org/0000-0003-3639-1317

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kang K.H., Kim G.T., Park S., Seo P.W., Seo H., Lee Ch.W.* A review on the Mo-precursors for catalytic hydroconversion of heavy oil // J. Ind. Eng. Chem. 2019. V. 76. P. 1–16.
 - https://doi.org/10.1016/j.jiec.2019.03.022
- 2. Sahu R., Song B.J., Im J.S., Jeon Y.-P., Lee C.W. A review of recent advances in catalytic hydrocracking of heavy residues// J. of Ind. and Engin. Chem. V. 27. 25 July 2015. P. 12–24.
 - https://doi.org/10.1016/j.jiec.2015.01.011
- 3. Bellussi G., Rispoli G., Landoni A., Millini R., Molinari D., Montanari E., Moscotti D., Pollese P. Hydroconversion of heavy residues in slurry reactors: developments and perspectives. // J. Catal. 2013. V. 308. P. 189–200. https://doi.org/10.1016/j.jcat.2013.07.002

126 KAДИЕВ X. M. и др.

- 4. *Kunnas J., Smith L.* Improving residue hydrocracking performance // PTQ Q3. 2011. V. 3. P. 50–57. https://www.digitalrefining.com/article/1000387/improving-residue-hydrocracking-performance
- A new nanocatalyst increases vacuum residue hydrocracker performance at Lukoil Neftohim Burgas JSC // Lukoil Neftohim Burgas AD. News. 02.03.2020. https://neftochim.lukoil.com/ru/News/News?rid=457129
- 6. *Малолетнев А.С., Шпирт М.Я.* Современное состояние технологий получения жидкого топлива из углей // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И.Менделеева). 2008. Т. LII. № 6. С. 44–52.
- 7. *Малолетнев А.С., Кричко А.А., Гаркуша А.А.* Получение синтетического жидкого топлива гидрогенизацией углей. М.: Недра, 1992. 128 с.
- 8. *Rezaei H., Ardakani Sh. J., Smith K. J.* Study of MoS₂ catalyst recycle in slurry-phase residue hydroconversion // Energy Fuels. 2012. V 26. P. 6540–6550. https://doi.org/10.1021/ef301098e.
- 9. Алькенова А.Б., Исагулов А.З., Жумашев К.Ж. Окислительный обжиг молибденовых концентратов // Труды Международной научно-практической конференции «Наука и образование ведущие факторы стратегии «Казахстан-2050» (Сагиновские чтения. № 5). 2013, июнь 20–21. С. 141–143.
- 10. *Хаджиев С.Н., Шпирт М.Я*. Микроэлементы в нефтях и продуктах их переработки. М.: Наука, 2012. 222 с.
- Sosnin G.A., Yazykov N.A., Yeletsky P.M., Zaikina O.O., Yakovlev V.A. Molybdenum recovery from spent Mobased dispersed catalyst accumulated in heavy oil steam cracking coke // Fuel Processing Technology. 2020. V. 208. 106520.
 - https://doi.org/10.1016/j.fuproc.2020.106520.

- Зеликман А.Н. Молибден. М.: Металлургия, 1990.
 438 с
- 13. *Кадиев Х.М., Дандаев А.У., Гюльмалиев А.М., Ба-тов А.Е., Хаджиев С.Н.* Гидроконверсия полиэтилена и шинной резины в смеси с тяжелыми нефтяными остатками // Химия твердого топлива. 2013. № 2. С. 65–72.
 - https://doi.org/10.7868/S0023117713020059
- 14. Висалиев М.Я., Шпирт М.Я., Кадиев Х.М., Дворкин В.И., Магомадов Э.Э., Хаджиев С.Н. Комплексная переработка тяжелых высоковязких нефтей и нефтяных остатков с извлечением ванадия, никеля и молибдена // ХТТ. 2012. № 2. С. 32–39 [Visaliev M.Ya, Shpirt M.Ya., Kadiev Kh.M., Dvorkin V.I., Magomadov E.E., Khadzhiev S.N. Integrated conversion of extra-heavy crude oil and petroleum residue with the recovery of vanadium, nickel and molybdenum // Solid fuel chemistry. 2012. V. 46. N 2. P. 100–107. https://doi.org/10.3103/S0361521912020127].
- 15. Яшник С.А., Исмагилова 3.Р. Окислительные катализаторы Pt–Pd/MnO_x-Al₂O₃: перспективы применения для контроля за содержанием сажи в отработанных газах дизеля // Кинетика и катализ. 2019. Т. 60. № 4. С. 486–498.
 - https://doi.org/10.1134/S0453881119040257
- 16. Sylvain Salvador, Jean-Michel Commandre, Brian R. Stanmore. Reaction rates for the oxidation of highly sulphurised petroleum cokes: the influence of thermogravimetric conditions and some coke properties. // Fuel. 2003. V. 82. № 6. P. 715–720. https://doi.org/10.1016/S0016-2361(02)00363-0ff