УДК 665.658.2; 66.097; 544.47

ВЛИЯНИЕ УСЛОВИЙ ПРОЦЕССА ГИДРОПЕРЕРАБОТКИ ЖИРНЫХ КИСЛОТ НА ФРАКЦИОННЫЙ И КОМПОНЕНТНЫЙ СОСТАВ ЖИДКИХ ОРГАНИЧЕСКИХ ПРОДУКТОВ

© 2024 г. К. С. Ковалевская^{1,*}, О. О. Заикина¹, Р. Г. Кукушкин¹, В .А. Яковлев¹

¹Институт катализа им. Г. К. Борескова СО РАН, Новосибирск, 630090, Россия *E-mail: shinkevich@catalysis.ru

Поступила в редакцию 04.07.2024 После доработки 23.07.2024 Принята в печать 12.08.2024

Изучено влияние различных параметров процесса гидропереработки растительных липидов, таких как соотношение водорода к смеси жирных кислот (ЖК), массовой скорости подачи сырья (МСПС) и температуры, на компонентный и фракционный состав жидких органических продуктов в условиях превращения на NiMo/ZSM-23 катализаторе. Основные продукты (в зависимости от параметров процесса) — компоненты моторного топлива (линейные и изомеризованные алканы), кислородсодержащие соединения, представляющие интерес для химической промышленности (жирные спирты). Показано, что при T = 300°C, P = 2.5 МПа, H_2 /ЖК = 2200 м³/м³ и МСПС = 2.1 ч⁻¹ жидкий органический продукт по составу представляет собой «дизельную» фракцию с соотношением *изо*-алканов к *н*-алканам, равным 8.6 (выход изо-алканов 61 мас.%). Увеличение МСПС до 8.4 ч⁻¹ позволяет получить органический продукт, состоящий в основном из O-содержащих соединений (жирных спиртов, сложных эфиров жирных кислот, лактонов) с выходом данных соединений 51 мас.%.

Ключевые слова: гидропереработка растительных липидов; катализатор NiMo/ZSM-23; параметры реакции

DOI: 10.56304/S2414215824020023; EDN: FFIFCC

Растительные масла [1], липиды микроводорослей [2], отработанные кулинарные жиры [3, 4], соапсток [5] не могут быть непосредственно использованы в качестве топлива для современных двигателей внутреннего сгорания из-за высокого содержания кислорода в их составе, низкой теплотворной способности и высокой вязкости [6]. Однако гидропереработка данных видов растительных липидов позволяет получать жидкие продукты, сходные по своим характеристикам с дизельным [7] и авиационным топливами [8].

В настоящее время существует несколько поколений биотоплив, различающихся по типу используемого растительного сырья [9]. Первым поколением биотоплив являются метиловые эфиры жирных кислот (МЭЖК), получаемые путем переэтерификации растительных масел или животных жиров в присутствии катализаторов [1]. Второе поколение биотоплив — линейные углеводороды (УВ), получаемые из пищевых и непищевых растительных масел [9]. Несмотря на коммерческий успех биотоплив пер-

вого поколения, они содержат большое количество кислородсодержащих соединений и, как следствие, обладают более низкой теплотворной способностью, низкой термоокислительной стабильностью, более высокой вязкостью и относительно низкими эксплуатационными характеристиками при низких температурах по сравнению с дизельным топливом, получаемым из нефтяного сырья [1]. Для получения биотоплив второго поколения с характеристиками, аналогичными используемым в настоящее время дизельным и авиационным топливам, требуется дополнительная стадия деоксигенации (ДО) для снижения высокого соотношения О/С и преодоления типичных недостатков биотоплив первого поколения [10]. Существующие требования к авиационному топливу предполагают наличие в его составе разветвленных алканов с длиной цепи 10-15 атомов углерода, а также циклоалканов и ароматических соединений (до 25%) [11]. Следовательно, нормальные алканы, образующиеся в результате деоксигенации, впоследствии должны быть подвергнуты гидроизомеризации (ГИ) и гидрокрекингу для получения более легких и разветвленных алканов [8]. Этот этап позволяет улучшить эксплуатационные характеристики как авиационного, так и дизельного топлива за счет снижения температуры застывания, а также увеличения цетанового числа в случае дизельных топлив [12].

Таким образом, производство биотоплив второго поколения, аналогичных по своим характеристикам традиционным моторным топливам, возможно с помощью двухступенчатых технологий, включающих стадии деоксигенации и гидроизомеризации. Технологии двухступенчатого процесса производства биотоплив разработаны UOP (США), Neste Corporation (Финляндия), Axens (Франция), Conoco Phillips (США), Petrobras (Бразилия), Haldor Topsøe (Дания), UPM Biofuels (Финляндия) [13, 14]. Согласно принципам «зеленой химии», количество технологических стадий стоит сократить для повышения энергоэффективности технологии [8]. В связи с этим для гидрообработки растительных масел целесообразно совмещать две стадии — деоксигенацию и гидроизомеризацию — в одном каталитическом процессе ДО + ГИ. Так, в 2021 г. компания UOP представила свой одноступенчатый вариант процесса [15].

В настоящее время для процесса ДО + ГИ активно исследуются никель-молибденовые катализаторы [16–21]. Для регулирования компонентного и фракционного состава продуктов, получаемых в результате гидропереработки растительных липидов, варьируют такие параметры процесса, как температура [22–24], соотношение водорода к исходному сырью [23, 25], давление [25–27] и МСПС [23, 25, 28]. Однако информации о промышленном внедрении одноступенчатой каталитической технологии переработки растительных масел и жиров в России нет.

Поскольку разработка активного катализатора для гидроочистки растительных масел и жиров является актуальной задачей, целью работы было определение влияния условий процесса гидроочистки модельного исходного сырья (смеси жирных кислот) на выход и свойства (компонентный и фракционный состав) продуктов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. В качестве носителя использовали цеолит ZSM-23 в H⁺ форме ($S_{\rm E3T} = 201~{\rm M}^2/{\rm \Gamma}$, $V_{\rm микро} = 0.06~{\rm cm}^3/{\rm \Gamma}$, $n({\rm NH}_3) = 955~{\rm мкмоль/\Gamma}$, Na₂O < 0.05 мас.%) с соотношением SiO₂/Al₂O₃ = 48 (Zeolyst International, CША). Нитрат никеля(II) Ni(NO₃)₂·6H₂O («ч.») (Реахим, Россия) и парамолибдат аммония (NH₄)₆Mo₇O₂₄·4H₂O («ч.») (Ла-

верна, Россия) были использованы в качестве предшественников металлов. В качестве комплексообразователя использовали 25%-й раствор аммиака (база № 1 Химреактивов, Россия).

В качестве модельного сырья в процессе ДО + ГИ использовали техническую олеиновую кислоту (Реахим, Россия) (далее — смесь ЖК), в состав которой входят пальмитиновая (5.1 мол.%), стеариновая (3.1 мол.%), олеиновая (59.2 мол.%), линолевая (30.4 мол.%), линоленовая (1.7 мол.%) и арахидоновая (0.5 мол.%) кислоты.

Приготовление катализатора. Катализатор Ni-Mo/ZSM-23 (Ni – 5 мас.% и Mo – 5.3 мас.% по АЭС-ИСП, $S_{\rm БЭТ}=87~{\rm M}^2/{\rm \Gamma},~V_{\rm микро}=0.01~{\rm cm}^3/{\rm \Gamma},~n({\rm NH_3})=786~{\rm мкмоль/r})$ был приготовлен методом пропитки по влагоемкости из совместного аммиачного Ni–Mo-пропиточного раствора с рН 11. Далее катализатор сушили при 120°С в течение часа и прокаливали при 550°С в течение 2 ч. Перед экспериментами образец восстанавливали *in situ* в потоке водорода (500 мл/мин) в течение часа при температуре 550°С при атмосферном давлении.

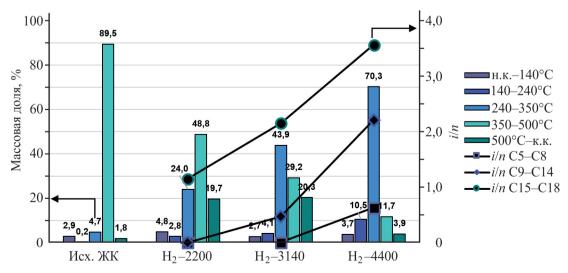
Каталитические эксперименты. Каталитические эксперименты проводили в проточном реакторе в токе водорода. Загрузка катализатора составила 1 г (фракция 0.25–0.5 мм). Для равномерного теплообмена навеску катализатора смешивали с кварцем 3.8 г (0.63–1.0 мм). Давление во всех экспериментах составляло 2.5 МПа. Код экспериментов и изменяемые параметры процесса представлены в табл. 1.

Таблица 1. Коды экспериментов и варьируемые параметры процесса гидропереработки смеси ЖК

Код	T, °C	МСПС*, ч ^{−1}	$H_2/ЖК, м^3/м^3$
Варьирование соотношения Н2/ЖК			
H ₂ -2200			2200
H ₂ -3140	300	8.4	3140
H ₂ -4400			4400
Варьирование скорости подачи сырья			
при $H_2/ЖK = 2200 \text{ м}^3/\text{м}^3$			
МСПС-2.1		2.1	
МСПС-4.2	300	4.2	2200
МСПС-8.4		8.4	
Варьирование температуры			
T-270	270		2200
T-300	300	2.1 2200	
T-330	330		2200
T-360	360		

^{*} МСПС — массовая скорость подачи сырья.

Анализ жидких органических продуктов. Фракционный состав жидких продуктов гидропереработки смеси ЖК определяли методом имитированной дистилляции (Sim-Dist) аналогично работе [29]. Согласно ГОСТ 32513-2013, ASTM D910 (моторные топлива, неэтилированный бензин, авиационный бензин), ГОСТ 10227-86, ASTM D7223 (реактивные топлива, авиационное турбинное топливо), ГОСТ 305-82, ASTM D975 (дизельное топливо) и литературным данным [18, 19] фракции были разделены на следующие температурные диапазоны: до 140°С — «бензин», 140–240°С — «реактивное топливо», 240–350°С — «дизельное топливо», 350–500°С — «вакуумный газойль» и более 500°С — «гудрон».


Групповой состав жидких продуктов гидропереработки смеси ЖК изучали методом двумерной газовой хроматографии ($\Gamma X \times \Gamma X$) аналогично работе [29]. По длине цепи линейные и изоалканы, а также алкены были разделены на следующие группы — C_5 – C_8 , C_9 – C_{14} и C_{15} – C_{18} [22, 30, 31].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Варьирование соотношения водорода к исходному сырью. На рис. 1 показан фракционный состав исходной смеси ЖК и жидких органических продуктов, полученных после 10 ч гидропереработки смеси при $T=300^{\circ}$ С, P=2.5 МПа, МСПС = 8.4 ч $^{-1}$ и различном соотношении H_2 /ЖК. Необходимо отметить, что проведение процесса при высоком значении МСПС = 8.4 ч $^{-1}$ позволяет корректно сравнивать активность катализатора при различных условиях.

По мере увеличения соотношения Н2/ЖК наблюдается увеличение массовых долей фракций «бензина», «реактивного топлива» и «дизеля». При этом значительно снижаются доли фракций «вакуумного газойля» и «гудрона». Таким образом можно отметить более глубокое превращение исходного сырья при увеличении соотношения Н₂/ЖК с 2200 до 4400 м³/м³. Также при увеличении соотношения Н2/ЖК происходит заметное снижение массовой доли побочных кислородсодержащих соединений в получаемых продуктах — эфиров жирных кислот и лактонов (табл. 2). Эфиры жирных кислот $(C_{20}-C_{45})$ получаются в результате взаимодействия исходных жирных кислот с жирными спиртами (С9-С35), образующимися в ходе частичной деоксигенации жирных кислот [20] (рис. 4). Лактоны (С8-С35) являются внутренними циклическими сложными эфирами и могут образовываться из жирных кислот при недостаточно деоксигенирующей способности катализаторов [32] (рис. 4). Таким образом основной вклад в высокое содержание высококипящих фракций в экспериментах может быть связан с большим содержанием лактонов и эфиров жирных кислот в продуктах (табл. 2). Увеличение количества фракций «бензина», «реактивного топлива» и «дизеля» по мере повышения соотношения Н2/ЖК, по-видимому, связано с уменьшением количества кислородсодержащих соединений, а также увеличением количества изо-алканов с различной длиной цепи, которые имеют более низкую температуру кипения, чем линейные алканы [6, 33].

Для процессов переработки растительных масел и жирных кислот соотношение водорода к сырью обычно составляет 1500–2500 м³/м³ (при температу-

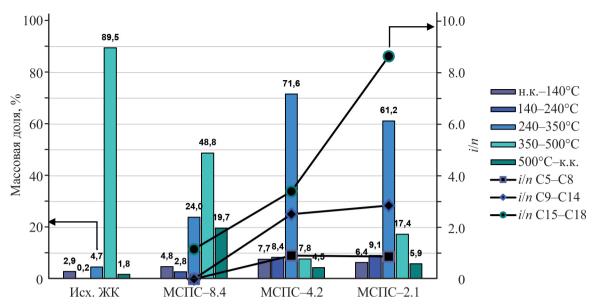
Рис. 1. Фракционный состав, согласно данным Sim-Dist, и массовое соотношение *изо*-алканов к линейным алканам, согласно данным $\Gamma X \times \Gamma X$, в экспериментах с варьированием $H_2/\mathcal{K}K$.

T = 300°C, P = 2.5 МПа, МСПС = 8.4 ч⁻¹; н.к. — начало кипения, к.к. — конец кипения.

Таблица 2. Состав жидкой органической фазы за 10-й последний час процесса, согласно данным двумерной газовой хроматографии $(T=300^{\circ}\text{C}, P=2.5 \text{ M}\Pi\text{a}, \text{MC}\Pi\text{C}=8.4 \text{ y}^{-1})$

Эксперимент	H ₂ -2200	H ₂ -3140	H ₂ -4400	
Соединение	мас.%			
С6-С15 ЖК	1.0	0.7	0.4	
C_{10} – C_{25} циклоалканы	3.0	6.7	1.0	
C_8 – C_{35} лактоны	23.1	17.4	0.7	
C_{20} – C_{45} эфиры жирных кислот	19.0	23.8	0.6	
С9-С35 спирты	9.4	7.4	0.4	
C_{16} – C_{20} исходные ЖК	35.9	13.2	1.6	
C_5 – C_8 <i>н</i> -алканы	0.0	4.2	0.6	
C_5 – C_8 изо-алканы	0.1	0.0	0.4	
С5-С8 алкены	0.6	0.3	0.8	
<i>i/n</i> C ₅ –C ₈	0.0	0.0	0.6	
С ₉ –С ₁₄ <i>н</i> -алканы	0.0	0.3	1.3	
С9–С ₁₄ изо-алканы	0.1	0.3	2.8	
С9-С14 алкены	1.8	0.1	7.5	
i/n C ₉ –C ₁₄	0.0	0.5	2.2	
C_{15} – C_{18} <i>н</i> -алканы	0.4	2.0	14.6	
C_{15} – C_{18} изо-алканы	0.4	4.2	52.2	
C_{15} – C_{18} алкены	5.1	17.4	15.2	
$i/n C_{15}-C_{18}$	1.2	2.2	3.6	
О-содержащие соединения	88.7	62.4	3.7	
Органическая фаза	93.5	88.4	76.4	

рах 320–450°С) [19, 34–36]. Поэтому для проведения дальнейших исследований было выбрано соотношение H_2 /ЖК равное 2200 м³/м³. Используемое в работе модельное сырье (смесь жирных кислот) близко по температуре кипения к фракции «вакуумного газойля» (360–500°С) [37]. На российских нефтеперерабатывающих заводах гидроочистку вакуумного газойля проводят при объемной скорости подачи сырья до 1.5 ч⁻¹ [38], что в случае смеси ЖК и исследуемого катализатора соответствует МСПС = 3.4 ч⁻¹. Поэтому необходимо снижать значение массовой скорости подачи сырья до приемлемых значений с целью увеличения межрегенерационного периода работы катализатора.


Вариация скорости подачи сырья. Следующим варьируемым параметром стала массовая скорость подачи сырья. На рис. 2 представлен фракционный состав исходной смеси жирных кислот и жидких

органических продуктов, полученных на десятом часу проведения гидропереработки смеси ЖК при T=300°C, P=2.5 МПа, H_2 /ЖК = 2200 м³/м³ и различной массовой скорости подачи сырья.

По мере уменьшения массовой скорости подачи сырья существенно увеличивается количество светлых фракций «бензина», «реактивного топлива» и «дизеля». Также наблюдается снижение количества фракций «вакуумного газойля» и «гудрона». Основную долю в жидком продукте представляет фракция «дизеля». Таким образом, снижение массовой скорости подачи сырья способствует более глубокому протеканию процесса гидропереработки смеси ЖК. На это также указывает существенное снижение количества кислородсодержащих соединений в продуктах (табл. 3). Компонентный состав получаемых продуктов изменяется по мере снижения массовой скорости подачи сырья — существенно возрастает количество изо-алканов с различной длиной цепи, а также наблюдается увеличение количества циклоалканов (C_{10} – C_{25}). Соотношение изо-алканов к нормальным алканам растет по всех группах (C_5 – C_8 , C_9 – C_{14} , C_{15} – C_{18}) по мере уменьшения массовой скорости подачи сырья. Таким образом, при T = 300°C, $P = 2.5 \text{ M}\Pi a$, $H_2/\text{Ж}K = 2200 \text{ м}^3/\text{м}^3$ и уменьшении массовой скорости подачи сырья с 8.4 до 2.1 ч⁻¹, содержание кислородсодержащих соединений снижается с 88 до 3-7 мас.%. Стоит отметить, что при $MC\Pi C = 2.1 \text{ ч}^{-1}$ массовый выход жидкого органического продукта несколько меньше, чем при $MC\Pi C = 4.2 \text{ y}^{-1}$, что указывает на протекание побочной реакции гидрокрекинга. Однако несмотря на это, для проведения дальнейших исследований было выбрано MCПС = 2.1 ч^{-1} , поскольку при таких условиях проведения процесса наблюдается наибольшее соотношение изо-алканов к нормальным алканам во всех группах углеводородов (табл. 3).

Вариация температуры. Следующий варьируемый параметр — температура проведения процесса. На рис. 3 представлен фракционный состав исходной смеси ЖК и жидких органических продуктов, полученных на десятом часу проведения гидропереработки смеси ЖК при $P=2.5~\mathrm{M\Pi a}$, $\mathrm{H_2/ЖK}=2200~\mathrm{m^3/m^3}$, МСПС = $2.1~\mathrm{u^{-1}}$ и различной температуре.

По мере увеличения температуры процесса наблюдается увеличение массовых долей фракций «бензина», «реактивного топлива» и снижение долей фракций «дизеля», «вакуумного газойля» и «гудрона». Основную долю в жидком продукте представляет фракция «дизеля». Таким образом, увеличение температуры способствует более глубокому протеканию процесса гидропереработки смеси ЖК. Однако увеличение температуры приводит к

Рис. 2. Фракционный состав, согласно данным Sim-Dist, и массовое соотношение *изо*-алканов к линейным алканам, согласно данным $\Gamma X \times \Gamma X$, в экспериментах с варьированием МСПС.

T = 300°C, P = 2.5 МПа, H_2 /ЖК = 2200 м³/м³. н.к. – начало кипения, к.к. – конец кипения.

Таблица 3. Состав жидкой органической фазы на 10-м (последнем) часу процесса, согласно данным двумерной газовой хроматографии (T = 300°C, P = 2.5 МПа, H_2 /ЖК = 2200 м³/м³)

Эксперимент	МСПС-8.4	МСПС-4.2	МСПС-2.1		
Соединение		мас.%			
С6-С15 ЖК	1.0	0.2	0.5		
C_{10} – C_{25} циклоалканы	3.0	3.8	23.1		
C_8 – C_{35} лактоны	23.1	0.7	1.4		
C_{20} – C_{45} эфиры жирных кислот	19.0	0.5	1.4		
С9-С35 спирты	9.4	0.1	0.4		
C_{16} – C_{20} исходные ЖК	35.9	1.8	3.2		
C_5 – C_8 <i>н</i> -алканы	0.0	3.0	0.7		
C_5 – C_8 <i>изо</i> -алканы	0.1	2.8	0.6		
C_5 – C_8 алкены	0.6	1.3	0.0		
i/n C ₅ –C ₈	0.0	0.9	0.9		
С9–С ₁₄ <i>н</i> -алканы	0.0	2.2	1.6		
С9–С ₁₄ изо-алканы	0.1	5.6	4.6		
С9-С14 алкены	1.8	2.0	0.3		
<i>i/n</i> C ₉ –C ₁₄	0.0	2.5	2.8		
C_{15} – C_{18} <i>н</i> -алканы	0.4	16.0	6.5		
C_{15} – C_{18} изо-алканы	0.4	54.3	55.7		
C_{15} – C_{18} алкены	5.1	5.7	0.0		
$i/n C_{15}$ – C_{18}	1.2	3.4	8.6		
О-содержащие соединения	88.4	3.3	7.0		
Органическая фаза	93.5	75.2	67.4		

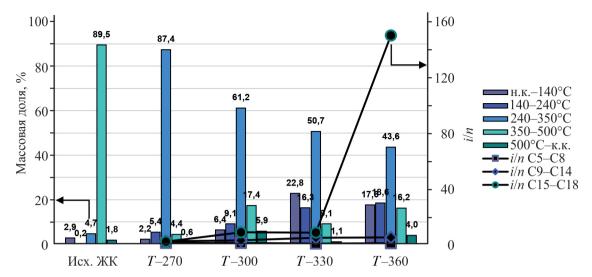
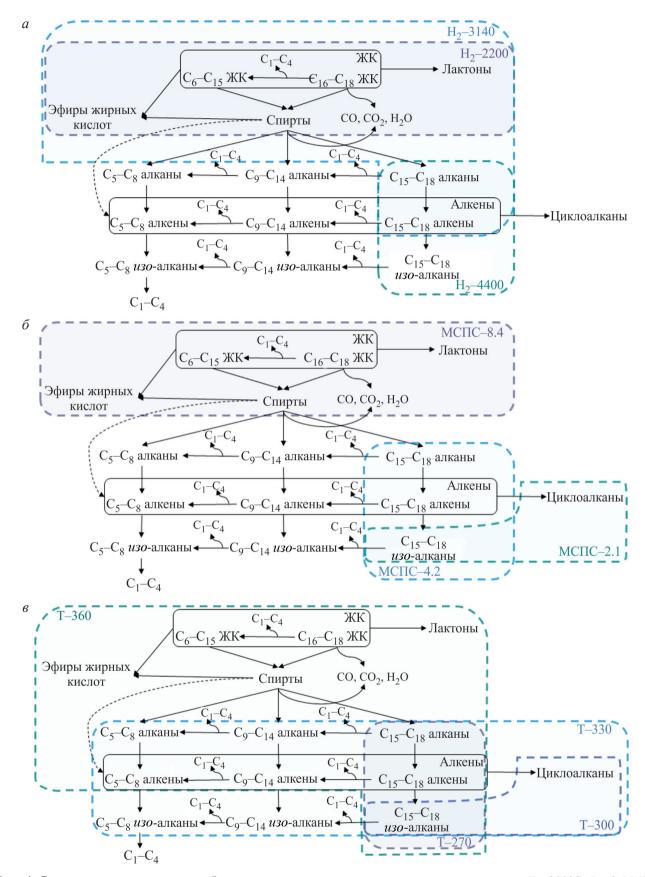


Рис. 3 - Фракционный состав, согласно данным Sim-Dist, и массовое соотношение изо-алканов к линейным алканам, согласно данным $\Gamma X \times \Gamma X$, в экспериментах с варьированием температуры.

 $P = 2.5 \text{ M}\Pi \text{a}$, MCПС = 2.1 u^{-1} , H₂/ЖК = $2200 \text{ м}^3/\text{m}^3$, н.к. — начало кипения, к.к. — конец кипения.


увеличению массовой доли кислородсодержащих соединений. Это может быть связано с тем, что более легкие углеводороды подвергаются процессу гидрокрекинга и превращаются в С1-С4 углеводороды (УВ), находящиеся в газовой фазе. В жидком же пролукте в основном остаются более тяжелые соединения (табл. 4). Распределение УВ по длине цепи также указывает на протекание побочного процесса гидрокрекинга — при температурах 270 и 300°C основную долю представляют УВ С₁₅-С₁₈, при температурах 330 и 360°C существенно увеличивается доля УВ С5-С8 и С9-С14 и снижается доля УВ C_{15} – C_{18} , в том числе и *изо*-алканов. Доля C_5 – C_8 и С9-С14 изо-алканов сначала увеличивается (при увеличении температуры до 330°C), а затем снижается. Снижение доли изо-алканов при температуре 360°C также связано с протеканием процесса гидрокрекинга, при котором более легкие изо-алканы превращаются в УВ С₁-С₄. Соотношение изо-алканов к нормальным алканам растет в группах УВ С9-С14 и C_{15} – C_{18} и практически не меняется в группе C_5 – C_8 УВ. Также стоит отметить увеличение доли алкенов с различной длиной цепи по мере увеличения температуры проведения процесса. Данное явление может быть связано с тем, что равновесие процесса гидрирование/дегидрирование при увеличении температуры смещается в сторону дегидрирования [39].

Теоретический выход жидкой органической фазы составляет 87.5 мас.%. По мере увеличения температуры массовый выход жидкой органической фазы снижается (табл. 4), что также связано с побочным процессом гидрокрекинга. При температурах 330 и

Таблица 4. Состав жидкой органической фазы на 10-м (последнем) часу процесса, согласно данным двумерной газовой хроматографии

 $(P = 2.5 \text{ M}\Pi \text{a}, \text{M}\text{C}\Pi\text{C} = 2.1 \text{ y}^{-1}, \text{H}_2/\text{W}\text{K} = 2200 \text{ m}^3/\text{m}^3)$

Эксперимент	T-270	T-300	T-330	T-360
Соединение	мас%			
С6-С15 ЖК	0.1	0.5	3.0	8.6
C_{10} – C_{25} циклоалканы	2.9	23.1	11.4	7.1
C_8 – C_{35} лактоны	0.1	1.4	1.5	12.3
C_{20} – C_{45} эфиры жир-	0.3	1.4	1.0	3.3
ных кислот				
С9-С35 спирты	0.0	0.4	1.3	4.9
C_{16} – C_{20} исходные ЖК	0.8	3.2	3.5	6.0
C_5 – C_8 <i>н</i> -алканы	0.4	0.7	7.8	1.8
C_5 – C_8 изо-алканы	0.4	0.6	4.7	1.1
С5-С8 алкены	0.0	0.0	8.4	10.4
<i>i/n</i> C ₅ –C ₈	1.0	0.9	0.6	0.6
C_9 – C_{14} <i>н</i> -алканы	1.6	1.6	1.7	0.5
C_9 – C_{14} изо-алканы	3.4	4.6	7.7	2.5
С9-С14 алкены	0.4	0.3	7.8	10.2
<i>i/n</i> C ₉ –C ₁₄	2.1	2.8	4.5	4.9
C_{15} – C_{18} <i>н</i> -алканы	32.1	6.5	4.3	0.2
C_{15} – C_{18} изо-алканы	57.5	55.7	35.7	25.0
C_{15} – C_{18} алкены	0.0	0.0	0.2	6.0
$i/n C_{15}-C_{18}$	1.8	8.6	8.3	150.0
О-содержащие соединения	1.3	7.0	10.3	35.1
Органическая фаза	77.6	67.4	41.5	38.1

Рис. 4. Схема процесса гидропереработки жирных кислот с получением *изо*-алканов: $a-T=300^{\circ}\text{C}$, P=2.5 МПа, МСПС = $8.4~\text{ч}^{-1}$ с варьированием $H_2/\text{Ж}$ К; $\sigma-T=300^{\circ}\text{C}$, P=2.5 МПа, $H_2/\text{Ж}$ К = $2200~\text{м}^3/\text{м}^3$ с варьированием МСПС; $\sigma-P=2.5$ МПа, МСПС = $2.1~\text{ч}^{-1}$, $H_2/\text{Ж}$ К = $2200~\text{м}^3/\text{м}^3$ с варьированием температуры.

360°C выход жидкой органической фазы составляет меньше 50%. Таким образом, при $P = 2.5 \text{ M}\Pi \text{a}$, $\text{H}_2/$ ЖК = $2200 \text{ м}^3/\text{м}^3$, МСПС = 2.1 ч^{-1} при температуре 270 и 300°C достигается практически полное превращение кислородсодержащих соединений, а также наблюдается высокий выход жидкой органической фазы, представляющей собой фракцию «дизеля». Остановиться стоит на температуре 300°C, поскольку при таких условиях протекания процесса соотношение изоалканов к нормальным алканам выше, чем при температуре 270°С. Материальный баланс для наиболее подходящих условий процесса получения дизельного топлива с соотношением изои нормальных алканов, равным 8.6 ($P = 2.5 \text{ M}\Pi a$, $H_2/KK = 2200 \text{ m}^3/\text{m}^3$, $MC\Pi C = 2.1 \text{ q}^{-1} \text{ H} T = 300^{\circ}\text{C}$), приведен в табл. 5.

Согласно полученным данным компонентного состава жидких органических продуктов можно предложить следующую схему реализации процесса гидропереработки смеси ЖК в проточном реакторе и распределение продуктов в зависимости от параметров проведения процесса (рис. 4). Приведенная схема отражает глубину протекания процесса в зависимости от выбранных условий и может служить ориентиром при выборе параметров протекания процесса с целью получения целевых фракций. Основные продукты гидропереработки смеси ЖК в проточном реакторе являются УВ — линейные и изо-алканы, алкены и циклоалканы, а также кислородсодержащие соединения — более короткие жирные кислоты, лактоны, сложные эфиры жирных кислот и спирты.

Таблица 5. Материальный баланс на 10-м (последнем) часу процесса при P = 2.5 МПа, $H_2/ЖK = 2200$ м $^3/м^3$, МСПС = 2.1 ч $^{-1}$ и T = 300 °C

Компонент	Выход, мас.%	
Жидкий органический продукт:	67.4	
«Бензин»	4.3	
«Реактивное топливо»	6.1	
«Дизель»	41.2	
«Вакуумный газойль»	11.7	
«Гудрон»	4.0	
Вода	13.0	
Газовая фаза	16.4	
Метан	0.4	
Этан	0.9	
Пропан	2.9	
Бутан	12.2	
Массовый баланс	96.7	

ЗАКЛЮЧЕНИЕ

В данной работе была показана зависимость фракционного и компонентного состава получаемых жидких органических продуктов от параметров (температуры, соотношения Н2/ЖК и массовой скорости подачи сырья) процесса гидропереработки смеси жирных кислот в проточном реакторе на NiMo/ZSM-23 катализаторе. Показано, что изменение этих параметров оказывает существенное воздействие на выход и состав жидких органических продуктов. Найдено, что при высоких значениях МСПС (8.4 ч⁻¹) и T = 300°С и P = 2.5 МПа возможно образование жирных спиртов и сложных эфиров жирных кислот C_{20} – C_{45} , а также лактонов C_8 – C_{35} . Увеличение соотношения Н2/ЖК способствует более глубокому протеканию процесса и росту соотношения количеств изо-алканов к нормальным алканам. Проведение же процесса при $H_2/ЖK = 4400 \text{ м}^3/\text{м}^3$, T = 300°C, P = 2.5 МПа и МСПС = 8.4 ч⁻¹ приводит к образованию в основном дизельной фракции с соотношением изо-алканов к нормальным алканам, равным 3.6. Использование меньшей скорости подачи сырья, равной 2.1 ч $^{-1}$, при T = 300°C, P = 2.5 МПа и $H_2/ЖK = 2200 \text{ м}^3/\text{м}^3$ приводит к образованию в основном дизельной фракции с соотношением изоалканов к нормальным алканам, равным 8.6. Повышение температуры процесса приводит к снижению выхода жидкой органической фазы, увеличению количества УВ C_5 – C_8 и C_9 – C_{14} и росту соотношения изо-алканов к нормальным алканам. Оптимальные условия гидропереработки смеси ЖК для получения дизельной фракции с высоким выходом *изо*-алканов следующие: T = 300°C, P = 2.5 МПа, $H_2/ЖK = 2200 \text{ м}^3/\text{м}^3 \text{ и MCПC} = 2.1 \text{ ч}^{-1}.$

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект № FWUR-2024-0043).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Ковалевская Ксения Сергеевна, м.н.с. ORCID: https://orcid.org/0000-0003-3558-4918 Заикина Олеся Олеговна, н.с., к.х.н. ORCID: https://orcid.org/0009-0002-6626-5629

Кукушкин Роман Геннадьевич, с.н.с., к.х.н. ORCID: https://orcid.org/0000-0001-8124-352X Яковлев Вадим Анатольевич, д.х.н. ORCID: https://orcid.org/0000-0001-5015-3521

СПИСОК ЛИТЕРАТУРЫ

- 1. *Li X.*, *Luo X.*, *Jin Y.*, *Li J.*, *Zhang H.*, *Zhang A.*, *Xie J.* Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels // Renewable and Sustainable Energy Reviews. 2018. V. 82. P. 3762–3797. https://doi.org/10.1016/j.rser.2017.10.091
- 2. Hwa K.L.J., Yang G.Y., Chyuan O.H., Fye L.B., Hsin C. W., Tung C.C., Chuan L.T., Jaromir K.J. Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective // Renewable and Sustainable Energy Reviews. 2021. V. 149. P. 111396. https://doi.org/10.1016/j.rser.2021.111396
- 3. *Khodadadi M.R., Malpartida I., Tsang C.W., Lin C.S.K., Len C.* Recent advances on the catalytic conversion of waste cooking oil // Molecular Catalysis. 2020. V. 494. P. 111128. https://doi.org/10.1016/j.mcat.2020.111128
- 4. Goh B.H.H., Chong C.T., Ge Y., Ong H.C., Ng J.-H., Tian B., Ashokkumar V., Lim S., Seljak T., Józsa V. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production // Energy Convers Manag. 2020. V. 223. P. 113296. https://doi.org/10.1016/j.enconman.2020.113296
- 5. *Malins K*. Production of renewable hydrocarbons from vegetable oil refining by-product/waste soapstock over selective sulfur-free high metal loading SiO₂–Al₂O₃ supported Ni catalyst via hydrotreatment // J. Clean Prod. 2021. V. 283. P. 125306. https://doi.org/10.1016/j.jclepro.2020.125306
- Yeletsky P.M., Kukushkin R.G., Yakovlev V.A., Chen B.H. Recent advances in one-stage conversion of lipid-based biomass-derived oils into fuel components — aromatics and isomerized alkanes // Fuel. 2020. V. 278. P. 118255. https://doi.org/10.1016/j.fuel.2020.118255
- 7. Alkhoori S., Khaleel M., Vega L.F., Polychronopoulou K. Deoxygenation of vegetable oils and fatty acids: How can we steer the reaction selectivity towards diesel range hydrocarbons? // J. of Industrial and Engineering Chemistry. 2023. V. 127. P. 36–61. https://doi.org/10.1016/j.jiec.2023.07.031
- 8. Song M., Zhang X., Chen Y., Zhang Q., Chen L., Liu J., Ma L. Hydroprocessing of lipids: An effective production process for sustainable aviation fuel // Energy. 2023. V. 283. P. 129107.
 - https://doi.org/10.1016/j.energy.2023.129107
- 9. Hongloi N., Prapainainar P., Prapainainar C. Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts // Molecular Catalysis. 2021. V. 523. P. 111696.
 - https://doi.org/10.1016/j.mcat.2021.111696.

- 10. Zhou Y., Remón J., Jiang Z., Matharu A.S., Hu C. Tuning the selectivity of natural oils and fatty acids/esters deoxygenation to biofuels and fatty alcohols: A review // Green Energy and Environment. 2023. V. 8. P. 722–743. https://doi.org/10.1016/j.gee.2022.03.001
- 11. *Nakagawa Y., Tamura M., Tomishige K.* Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass // Fuel Processing Technology. 2019. V. 193. P. 404–422. https://doi.org/10.1016/j.fuproc.2019.05.028
- Misra P., Alvarez-Majmutov A., Chen J. Isomerization catalysts and technologies for biorefining: Opportunities for producing sustainable aviation fuels // Fuel. 2023. V. 351. P. 128994. https://doi.org/10.1016/j.fuel.2023.128994
- 13. Perez-Cisneros E.S., Sales-Cruz M., Lobo-Oehmichen R., Viveros-García T. A reactive distillation process for cohydrotreating of non-edible vegetable oils and petrodiesel blends to produce green diesel fuel // Comput. Chem. Eng. 2017. V. 105. P. 105–122. https://doi.org/10.1016/j.compchemeng.2017.01.018
- Baldiraghi F., Stanislao M.D., Faraci G., Perego C., Marker T., Gosling C., Kokayeff P., Kalnes T., Marinangeli R. Ecofining: New process for green diesel production from vegetable oil // Sustainable Industrial Chemestry, Ch. 8, Wiley-VCH. 2009. P. 427–38. https://doi.org/10.1002/9783527629114.ch8
- Honeywell UOP. Advances in EcofiningTM technology provide a cost-efficient, fast-to-market path to renewable diesel and jet fuels. 2021.
- 16. Shinkevich K.S., Kukushkin R.G., Bulavchenko O.A., Zaikina O.O., Alekseeva M.V., Ruvinskiy P.S., Yakovlev V.A. Influence of the support on activity and stability of Ni and Ni-Mo catalysts in the hydroprocessing of fatty acids into motor fuels components // Appl. Catal. A Gen. 2022. V. 644. P. 118801. https://doi.org/10.1016/j.apcata.2022.118801
- 17. *Chen N., Gong S., Qian E. W.* Effect of reduction temperature of NiMoO_{3-x}/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate // Appl. Catal. B. 2015. V. 174–175. P. 253–263. https://doi.org/10.1016/j.apcatb.2015.03.011
- 18. Verma V., Mishra A., Anand M., Farooqui S.A., Sinha A.K. Catalytic hydroprocessing of waste cooking oil for the production of drop-in aviation fuel and optimization for improving jet biofuel quality in a fixed bed reactor // Fuel. 2023. V. 333. P. 126348. https://doi.org/10.1016/j.fuel.2022.126348
- Verma D., Rana B.S., Kumar R., Sibi M.G., Sinha A.K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11 // Appl. Catal. A Gen. 2015. V. 490. P. 108–116. https://doi.org/10.1016/j.apcata.2014.11.007
- 20. Kordouli E., Sygellou L., Kordulis C., Bourikas K., Lycourghiotis A. Probing the synergistic ratio of the NiMo/γ-Al₂O₃ reduced catalysts for the transformation

- of natural triglycerides into green diesel // Appl. Catal. B. 2017. V. 209. P. 12–22.
- https://doi.org/10.1016/j.apcatb.2017.02.045
- 21. *Ding S., Li F., Li Z., Yu H., Song C., Xiong D., Lin H.*Catalytic hydrodeoxygenation of waste cooking oil and stearic acid over reduced nickel-based catalysts // Catal. Commun. 2021. V. 149. P. 106235. https://doi.org/10.1016/j.catcom.2020.106235
- 22. Hunsiri W., Chaihad N., Ngamcharussrivichai C., Tungasmita D.N., Reubroycharoen P., Hinchiranan N. Branched-chain biofuels derived from hydroisomerization of palm olein using Ni/modified beta zeolite catalysts for biojet fuel production // Fuel Processing Technology. 2023. V. 248. P. 107825. https://doi.org/10.1016/j.fuproc.2023.107825
- 23. Yang Y., Wang Q., Zhang X., Wang L., Li G. Hydrotreating of C₁₈ fatty acids to hydrocarbons on sulphided NiW/SiO₂–Al₂O₃ // Fuel Processing Technology. 2013. V. 116. P. 165–174.
 - https://doi.org/10.1016/j.fuproc.2013.05.008
- 24. Liu Q., Zuo H., Zhang Q., Wang T., Ma L. Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts // Cuihua Xuebao/Chinese J. of Catalysis. 2014. V. 35. P. 748–756. https://doi.org/10.1016/s1872-2067(12)60710-4
- 25. Chen L., Li H., Fu J., Miao C., Lv P., Yuan Z. Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst // Catal. Today. 2016. V. 259. P. 266–276. https://doi.org/10.1016/j.cattod.2015.08.023
- Cao Y., Shi Y., Bi Y., Wu K., Hu S., Wu Y., Huang S. Hydrodeoxygenation and hydroisomerization of palmitic acid over bi-functional Co/H-ZSM-22 catalysts // Fuel Processing Technology. 2018. V. 172. P. 29–35. https://doi.org/10.1016/j.fuproc.2017.09.020
- 27. Vlasova E.N., Porsin A.A., Aleksandrov P.V., Nuzhdin A.L., Bukhtiyarova G.A. Co-processing of rapeseed oil straight run gas oil mixture: Comparative study of sulfide CoMo/Al₂O₃-SAPO-11 and NiMo/Al₂O₃-SAPO-11 catalysts // Catal. Today. 2021. V. 378. P. 119–125. https://doi.org/10.1016/j.cattod.2020.11.017
- Wang H., Yan S., Salley S. O., Ng K. Y. S. Hydrocarbon fuels production from hydrocracking of soybean oil using transition metal carbides and nitrides supported on ZSM-5 // Ind. Eng. Chem. Res. 2012. V. 51. P. 10066–10073. https://doi.org/10.1021/ie3000776
- 29. Sukhorukov D.A., Kukushkin R.G., Alekseeva (Bykova) M.V., Bulavchenko O.A., Zaikina O.O., Revyakin M.E. Upgrading of sewage sludge-derived pyrolysis oil via hydrotreatment over NiMo-based catalysts // Fuel. 2024. V. 359. P. 130383. https://doi.org/10.1016/j.fuel.2023.130383
- 30. Ishihara A., Tsuchimori Y., Hashimoto T. Dehydrocyclization-cracking of methyl oleate by Pt

- catalysts supported on a ZnZSM-5-Al₂O₃ hierarchical composite // RSC Adv. 2021. V. 11. P. 19864–19873. https://doi.org/10.1039/d1ra02677a
- 31. Feng F., Wang L., Zhang X., Wang Q. Self-Pillared ZSM-5-Supported Ni Nanoparticles as an Efficient Catalyst for Upgrading Oleic Acid to Aviation-Fuel-Range-Alkanes // Ind. Eng. Chem. Res. 2019. V. 58. P. 13112–13121. https://doi.org/10.1021/acs.iecr.9b02527
- 32. Bal'zhinimaev B.S., Paukshtis E.A., Suknev A.P., Makolkin N.V. Highly selective/enantioselective Pt-ReO_x/C catalyst for hydrogenation of L-malic acid at mild conditions // J. of Energy Chemistry. 2018. V. 27. P. 903–912. https://doi.org/10.1016/j.jechem.2017.07.018
- 33. *Aljajan Y., Stytsenko V., Rubtsova M., Glotov A.* Hydroisomerization Catalysts for High-Quality Diesel Fuel Production // Catalysts. 2023. V. 13. P. 1363. https://doi.org/10.3390/catal13101363
- 34. Smirnova M.Y., Kikhtyanin O.V., Smirnov M.Y., Kalinkin A.V., Titkov A.I., Ayupov A.B., Ermakov D.Yu. Effect of calcination temperature on the properties of Pt/SAPO-31 catalyst in one-stage transformation of sunflower oil to green diesel // Appl. Catal. A Gen. 2015. V. 505. P. 524–531. https://doi.org/10.1016/j.apcata.2015.06.019
- 35. Nepomnyashchiy A.A., Buluchevskiy E.A., Lavrenov A.V., Yurpalov V.L., Gulyaeva T.I., Leont'eva N.N., Talzi V.P. Hydrodeoxygenation of Vegetable Oil on NiMoS/WO₃–Al₂O₃ Catalysts // Russian Journal of Applied Chemistry. 2017. V. 90. P. 1944–1952. https://doi.org/10.1134/S1070427217120084
- 36. Nepomnyashchiy A.A., Saibulina E.R., Buluchevskiy E.A., Gulyaeva T.I., Yurpalov V.L., Mironenko R.M., Potapenko O.V., Lavrenov A.V. Simultaneous deoxygenation and isomerization of fatty acid triglycerides of sunflower oil over Pt/Al₂O₃-zeolite catalysts // Catal. Ind. 2023. V. 23. P. 25–34. https://doi.org/10.18412/1816-0387-2023-5-25-34
- 37. van Veen J.A.R., Minderhoud J.K., Huve L.G., Stork W.H.J. Hydrocracking and Catalytic Dewaxing // Handbook of Heterogeneous Catalysis. 2008. V. 634. P. 2778–2808.
 - https://doi.org/10.1002/9783527610044.hetcat0141
- 38. Klimov O.V., Koryakina G.I., Gerasimov E.Y., Dik P.P., Leonova K.A., Budukva S.V., Pereyma V.Yu., Uvarkina D.D., Kazakov M.O., Noskov A.S. A new catalyst for the deep hydrotreatment of vacuum gas oil, a catalytic cracking feedstock // Catal. Ind. 2015. V. 7. P. 38–46. https://doi.org/10.1134/S2070050415010092
- 39. Budukva S.V., Uvarkina D.D., Klimov O.V., Noskov A.S. Deactivating hydrotreatment catalysts: A Review // Catal. Ind. 2023. V. 15. P. 43–68. https://doi.org/10.1134/S2070050423010026