УДК: 544.478+665.658.2

СИНТЕЗ *IN SITU* НЕНАНЕСЕННЫХ ФОСФИДОВ НИКЕЛЯ И ИССЛЕДОВАНИЕ ИХ АКТИВНОСТИ В РЕАКЦИИ ГИДРОДЕХЛОРИРОВАНИЯ 1,4-ДИХЛОРБЕНЗОЛА

© 2024 г. Э. Г. Джабаров^{1,*}, В. Д. Кузьмин², Н. Н. Петрухина¹, Е. М. Захарян¹

¹Институт нефтехимического синтеза им. А. В. Топчиева РАН, Москва, 119991 Россия, ²Российский государственный университет нефти и газа (НИУ) им. И. М. Губкина, Москва, 119991 Россия *Email: dzhabarov@ips.ac.ru

> Поступила в редакцию 16.08.2024 После доработки 31.08.2024 Принята к публикации 02.12.2024

Синтезированы ненанесенные фосфиды никеля *in situ* в реакционной среде в условиях гидродехлорирования 1,4-дихлорбензола. В качестве источников фосфора использовали трифенилфосфин и красный фосфор как более благоприятные с экологической и экономической точки зрения. Методом РФА показано, что фаза Ni₂P формируется уже при мольном соотношении Ni/P, равном 1/1, при использовании красного фосфора в качестве источника фосфора. Исследовано влияние температуры и давления на активность получаемых катализаторов. Показана возможность повторного использования фосфидов никеля в реакции гидродехлорирования: активность катализатора сохраняется в течение пяти циклов, тогда как нефосфидированный никель проявляет высокую каталитическую активность в первых трех циклах реакции, после чего наблюдается резкое снижение степени дехлорирования вследствие образования NiCl₂.

Ключевые слова: фосфид никеля; гидродехлорирование; ненанесенный катализатор; хлорсодержащие отходы

DOI: 10.56304/S2414215824020011; EDN: AJTJAS

В последние два десятилетия фосфиды никеля [1–5], молибдена [6], кобальта [7], а также биметаллические системы на основе фосфидов никеля и молибдена [8] активно исследуются в качестве катализаторов гидрообессеривания как альтернатива традиционным сульфидным катализаторам; при этом фосфиды молибдена и вольфрама проявляют бо́льшую активность по сравнению с сульфидами этих металлов [5]. Среди фосфидов металлов подгруппы железа наибольшая активность наблюдается при использовании именно Ni₂P [1, 5]. Фосфиды Ni, W, Co проявляют активность и в реакциях гидродеазотирования [9], гидродеароматизации [9, 10], гидродеоксигенации [11–13].

При синтезе фосфидных катализаторов вначале получают фосфаты соответствующих металлов, которые затем восстанавливают до фосфидов [14]; прекурсорами служат водорастворимые соли никеля и других металлов, гидрофосфаты аммония либо фосфорная кислота [3, 7, 10, 11, 14]. Возможен гидротермальный синтез ненанесенных фосфидов из водорастворимых солей никеля, фосфора в водной

среде в присутствии поверхностно-активных веществ [15]. В работе [13] предложено получение фосфидов никеля из водо- и маслорастворимых прекурсоров, в частности из трифенилфосфина и маслорастворимых солей никеля *in situ* в реакционной среде. Получаемые фосфиды никеля могут содержать следующие фазы: Ni₂P, Ni₃P, Ni₁₂P₅, Ni₅P₄ [16–18].

В последние годы возрастает интерес к исследованию в реакциях гидродехлорирования фосфидных катализаторов [17–22], которые имеют относительно невысокую стоимость по сравнению с металлами платиновой группы, часто используемыми в дехлорировании. В гидродехлорировании различных субстратов исследованы катализаторы на основе фосфидов никеля [19–17], молибдена [23, 24], кобальта [25], нанесенных на силикаты и оксид алюминия, обладающих определенной стабильностью к отравляющему воздействию HCl [22]. В фосфидах никеля наблюдается частичный перенос электронов от никеля к фосфору и снижение электронной плотности на атоме никеля, на котором появляется

небольшой положительный заряд [16–18]. Благодаря этому взаимодействие атомов хлора и никеля ослабляется, что облегчает десорбцию хлора с активных центров никеля и обеспечивает длительную работу катализатора без потери активности.

Изменение морфологии и состава носителей при их взаимодействии с хлористым водородом, закоксовывание катализаторов в процессе гидродехлорирования, которое особенно заметно при переработке хлорароматических соединений [26], осложняют выбор носителя для катализатора. В этой связи, могут представлять интерес ненанесенные фосфидные катализаторы гидродехлорирования. Ранее нами [27, 28] были исследованы сульфидные ненанесенные наногетерогенные катализаторы гидродехлорирования, которые проявили высокую активность, устойчивость к дезактивации, а также показали высокую степень гидрооблагораживания сырья в параллельных реакциях гидродехлорирования — гидрирования, гидродехлорирования — гидродеоксигенации, гидродехлорирования — гидрообессеривания.

Ненанесенным фосфидным катализаторам гидродехлорирования посвящены только две работы [29, 30]. В работе [29] наночастицы фосфида никеля $Ni_{12}P_5$, диаметр которых составляет около 5 нм, синтезированы из Ni(NO₃)₂ и красного Р гидротермальным методом. Важно отметить доступность такого метода синтеза и нетоксичность применяемых реагентов. Катализатор исследован в реакции гидродехлорирования трихлорэтилена: при температуре реакции 400-500°C степень превращения связей C-Cl достигала 40-70% и увеличивалась с повышением соотношения Р/Ni. Перспективность ненанесенных катализаторов для промышленной переработки хлорсодержащих отходов сложного состава диктует требования к способу синтеза катализатора и исходным реагентам. Очевидно, предпочтительно использование доступных и экологически безопасных реагентов, таких как соли никеля и красный фосфор вместо широко используемого трифенилфосфина [29].

Цель настоящей работы — оптимизация условий синтеза фосфидов никеля *in situ* в среде 1,4-дихлор-

бензола и изучение активности получаемых катализаторов в гидродехлорировании. Были поставлены следующие задачи:

- изучение морфологии и фазового состава фосфидов никеля, формирующихся *in situ* в среде 1,4-дихлорбензола при разном соотношении прекурсоров никеля и фосфора;
- оптимизация условий синтеза катализатора и реакции гидродехлорирования;
- исследование изменения активности катализатора при повторном использовании.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Прекурсором для наногетерогенных катализаторов служил 2-этилгексаноат никеля (≥78%, кат. номер 338184, Sigma Aldrich). В качестве субстрата был исследован 1,4-дихлорбензол (≥99%, кат. номер 106467, Sigma Aldrich). Растворителем служил *н*-гексадекан (≥98%, ОАО «Компонент-Реактив», Россия). В качестве модельной смеси был приготовлен 10%ный раствор 1,4-дихлорбензола.

Катализаторы были синтезированы *in situ* в стальном автоклаве — реакторе периодического типа с постоянным перемешиванием и с температурой 340°С. Давление H₂ составляло 6 МПа (≥98%, Air Liquide), если не указано иное. Время реакции составляло 7 ч, если не указано иное. Фосфидирующим агентом служил красный фосфор или трифенилфосфин. Соотношение P/Ni варьировалось от 0 до 20. Соотношение катализатор/сырье было равно 60. Условия проведения каталитических экспериментов соответствовали условиям синтеза катализатора, так как катализатор был получен *in situ*.

В качестве субстрата, моделирующего жидкие продукты пиролиза смесей полимерных отходов, использовали 1,4-дихлорбензол, подвергая его гидродехлорированию до продуктов, не содержащих хлор — бензола и циклогексана (схема I).

Продукты исследовали методом газовой хроматографии на хроматографе «Кристаллюкс-4000М» (компания ООО «НПФ Мета-хром») с использованием капиллярной колонки Optima 1 (30 м \times 0.32 мм \times \times 0.50 мкм).

$$H_2$$
 — H_2 — H_2

Схема І. Гидродехлорирование 1,4-дихлорбензола.

Конверсия K 1,4-дихлорбензола и селективность S по продуктам, свободным от хлора (бензол и циклогексан), были рассчитаны с использованием уравнений 1 и 2 соответственно:

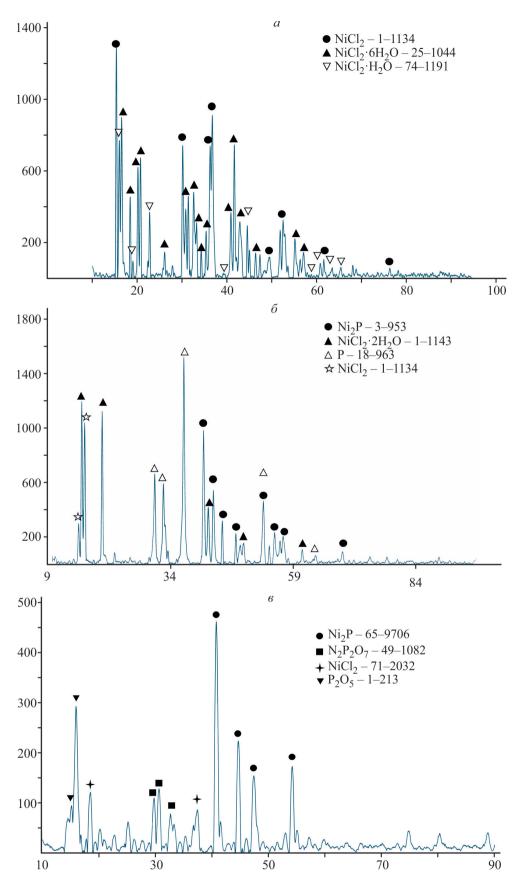
$$K = \frac{c_{\text{HCX}}^{\Pi\text{ДXБ}} - c_{\text{KOH}}^{\Pi\text{ДXБ}}}{c_{\text{HCX}}^{\Pi\text{ДXБ}}} \times 100\%, \tag{1}$$

$$S = \frac{c_{\text{продукты}}}{c_{\text{продукты}} + c_{\text{хлорбензол}}} \times 100\%, \tag{2}$$

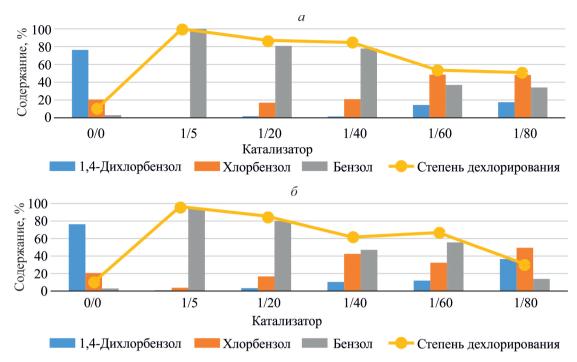
$$S = \frac{c_{\text{продукты}}}{c_{\text{продукты}} + c_{\text{хлорбензол}}} \times 100\%,$$
 (2)

где $c_{\text{исх}}^{\Pi \text{ДХБ}}$ — массовое содержание 1,4-дихлорбензола в сырьевой смеси, $c_{\text{кон}}^{\Pi Д X \text{Б}}$ — массовое содержание 1,4-дихлорбензола в продуктах реакции, $c_{\text{продукты}}$ массовое содержание бензола и циклогексана в продуктах реакции; $c_{\text{хлорбензол}}$ — массовое содержание хлорбензола в продуктах реакции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Физико-химическое исследование катализатора. Методом рентгено-флуоресцентного анализа (РФА) было проведено сравнение фазового состава катализаторов, синтезированных из трифенилфосфина и красного фосфора в качестве источника фосфора, а также без введения в систему источника фосфора (рис. 1). В образце, полученном из 2-этилгексаноата никеля при отсутствии в системе фосфора (рис. 1, а), обнаружены только фазы хлорида никеля и его гидратов разного состава, образец не содержит фазы металлического никеля и оксидов никеля, образование которых в присутствии в реакционной среде хлорсодержащих соединений не происходит. В случае синтеза катализатора на основе красного фосфора уже при соотношении Ni/P = 1/1 (рис. 1, б) наблюдается образование фазы Ni₂P, которая присутствует наряду с фазами хлорида никеля и его гидрата. Двадцатикратное увеличение содержания фосфора в системе (рис. 1, 6) приводит к уменьшению доли фазы хлорида никеля и увеличению — фазы Ni₂P, также в образце появляется фаза пирофосфата никеля. Фазы Ni₁₂P₅, Ni₃P не были обнаружены ни в одном из образцов.

Оптимизация условий синтеза катализатора и реакции гидродехлорирования. В первую очередь было исследовано влияние содержания прекурсора катализатора в реакционной системе на конверсию реакции гидродехлорирования. На рис. 2 приведены данные о составе смеси продуктов при разных соотношениях Ni/1,4-дихлорбензол. При уменьшении соотношения Ni/1,4-дихлорбензол конверсия субстрата снижается. Дальнейшие эксперименты проводили при мольном соотношении Ni/1,4-дихлорбензол = 1/60, при котором обеспечивается степень дехлорирования, близкая к 50%, что оптимально для сравнения различных каталитических систем и условий синтеза.


Использование красного фосфора в качестве источника фосфора обеспечивает каталитическую активность формирующихся фосфидов, близкую по значениям к активности катализатора, синтезируемого из трифенилфосфина в качестве источника фосфора (рис. 2). Можно таким образом предварительно сделать вывод о возможности и перспективности применения доступного и экологически безопасного источника фосфора [29, 30] для фосфидирования никеля взамен дорогостоящих органических фосфорсодержащих соединений, при этом осуществляя синтез катализатора in situ.

Далее была проведена оптимизация термобарических условий синтеза катализатора и реакции гидродехлорирования. Повышение давления водорода ожидаемо приводит к увеличению конверсии (рис. 3), что характерно для всех реакций гидрогенолиза. При давлении водорода 8 МПа достигается практически исчерпывающее дехлорирование с образованием, в основном, бензола. Давление не влияет на скорость формирования фосфидных частиц и их фазовый состав, по крайней мере в литературе такие данные отсутствуют. Ввиду чего варьирование данного параметра представляет интерес только с точки зрения повышения скорости газофазной реакции гидрогенолиза.

Значительно больший интерес представляет варьирование температуры, оказывающей большое влияние как на фазовый состав катализатора, так и на скорость и равновесие реакции гидродехлорирования. При мольном соотношении Ni/P = 1/1 повышение температуры от 340 до 400°C (рис. 4) способствует повышению степени гидродехлорирования; при проведении реакции при температуре 400°C в продуктах реакции 1,4-дихлорбензол практически отсутствует. Дальнейшее повышение температуры до 440°С ведет к снижению конверсии, по всей видимости, вследствие термодинамических ограничений протекания экзотермической реакции гидродехлорирования. В работе [31] на примере гидродехлорирования хлорбензола на фосфидах никеля, нанесенных на активированный уголь и силикаты, показано, что конверсия субстрата увеличивается в два раза в интервале температур 250— 350°С и далее выходит на плато. В нашем случае для достижения максимума конверсии требуется более высокая температура. Однако существенный рост конверсии при повышении температуры до 400°C можно объяснить увеличением скорости реакции не только за счет возрастания частоты взаимодействия молекул субстрата и водорода, но и благодаря изменению фазового состава катализатора, что

Рис. 1. Порошковые дифрактограммы катализаторов, синтезированных in situ из 2-этилгексаноата никеля и красного фосфора при мольном соотношении Ni/P 1/0 (a), 1/1 (δ), 1/20 (ϵ).

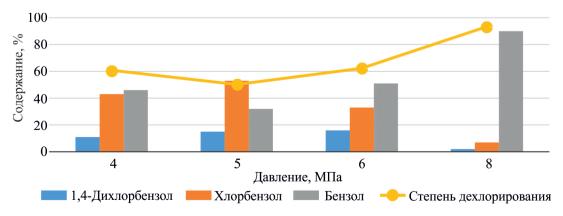


Рис. 2. Зависимость состава смеси продуктов и степени дехлорирования от мольного соотношения Ni/1,4-дихлорбензол при синтезе катализатора из красного фосфора (a) и трифенилфосфина (δ). Условия исследования: давление H₂ 6 MПа, температура 340°C, мольное соотношение Ni/P = 1/1.5.

играет большую роль в случае синтеза катализатора *in situ*.

Известно, что повышение температуры восстановления водородом для фосфидов никеля, синтезируемых из гидрофосфатов [32], способствует формированию фазы Ni_2P из промежуточных фаз Ni_1P_5 и Ni_5P_4 . Так, при температуре восстановления 510° С преобладает фаза Ni_1P_5 , 616° С — Ni_5P_4 , а при 646° С — Ni_2P . В условиях же гидротермального синтеза ненанесенного фосфида никеля [33] температура синтеза также влияет на фазовый состав катализатора: при температуре 120° С образуется

преимущественно фаза Ni_2P , а при $180^{\circ}C-Ni_{12}P_5$. Каталитическая активность фосфидов никеля в реакциях гидродехлорирования [34] и гидродеоксигенации зависит от температуры восстановления катализатора [32]: конверсия субстратов повышается с увеличением температуры восстановления катализатора вследствие повышения доли каталитически активной фазы Ni_2P , которая, как показано в работе [19], является более активной, чем $Ni_{12}P_5$ в гидродехлорировании хлорбензола. Вместе с тем, помимо исследования [19], нам не удалось найти другие исследования зависимости на активность и

Рис. 3. Зависимость состав смеси продуктов и степень дехлорирования 1,4-дихлорбензолаот от давления водорода. Условия: температура 340°C, мольное соотношение Ni/1,4-дихлорбензол = 1/60, мольное соотношение Ni/ красный фосфор = 1/1.

селективность катализатора в гидродехлорировании от фазового состава фосфидов никеля, тогда как данный аспект в отношении реакций гидродеоксигенации широко изучается [32, 35].

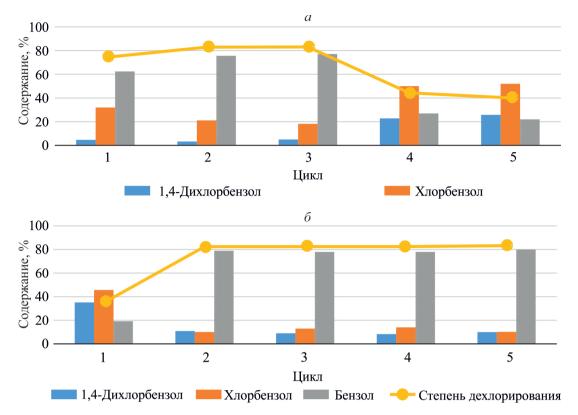
Как и в случае мольного соотношения 1/1 (рис. 4, *a*), степень дехлорирования возрастает до некоторой температуры и затем начинает снижаться из-за термодинамических ограничений. В случае мольного соотношения Ni/P 1/10 (рис. 4, *б*) и 1/20 (рис. 4, *в*) температура максимума конверсии немного меньше, чем в обедненной фосфором системе. Это обусловлено, по-видимому, тем, что в условиях избытка фосфора в системе равновесие смещается в сторону образования фаз фосфидов, а не хлоридов никеля, и каталитически активная фаза Ni₂P становится преобладающей (см. рис. 1), в отличие

от обедненной фосфором системы, в которой фазы фосфидов не являются преобладающими. Преобладание на поверхности катализатора, синтезируемого при мольном соотношении Ni/P = 1/1, хлорида никеля и его гидратов, выражается в том, что такой образец проявляет каталитическую активность при более высокой температуре, при которой *in situ* протекает дальнейшее фосфидирование никеля; данный процесс ускоряется с повышением температуры. В процессе гидродехлорирования 1,4-дихлорбензола в более низком температурном диапазоне 300–320°C существенной степени гидродехлорирования достигнуто не было.

Для нанесенных фосфидных катализаторов, содержащих обогащенные фосфором фазы — Ni_2P , $Ni_{12}P_5$, в сравнении с фазой Ni_3P , обогащенной ни-

Рис. 4. Зависимость состава смеси продуктов и степени дехлорирования 1,4-дихлорбензола от температуры. Условия: давление водорода 6 МПа, мольное соотношение Ni/1,4-дихлорбензол = 1/60, мольное соотношение Ni/красный фосфор = 1/1 (a), 1/10 (b) и 1/20 (b).

келем, характерен индукционный период, выражающийся в крайне низкой активности катализатора в первые часы проведения эксперимента и резком увеличении активности через некоторое время [19]. Это связано с наличием избытка фосфора на поверхности катализатора, который в процессе реакции в среде водорода постепенно превращается в фосфин. В целях установления наличия индукционного периода для ненанесенных катализаторов, формируемых in situ, были исследованы изменения состава продуктовой смеси и степени дехлорирования с длительностью эксперимента для катализатора, получаемого из красного фосфора при соотношении Ni/P = 1/20 (табл. 1). Уже в первый час реакции степень дехлорирования достигает 19%, продуктовая смесь содержит 9% бензола, что свидетельствует об отсутствии индукционного периода. Это можно объяснить формированием in situ фосфидов никеля при взаимодействии фосфина с никелем и его оксидами, образующимися при термическом разложении 2-этилгексаноата никеля. Поэтому исключается фаза фосфатов никеля, образование которой неизбежно при синтезе нанесенных катализаторов, а восстановление водородом фосфатов может приводить к избытку на поверхности фосфора [19], блокирующего активные центры. По данным рентгенофлуоресцентного анализа (рис. 1) в образцах, получаемых при значительном избытке фосфора (соотношение Ni/P = 1/10 и 1/20), присутствует фаза пирофосфата никеля, но интенсивность ее сигнала невелика. Таким образом, пирофосфат не блокирует поверхность катализатора.


В процессе гидродехлорирования важнейшим требованием к катализатору является стабильность активности, поскольку взаимодействие никеля или другого металла с HCl приводит к образованию хлоридов, их частичному восстановлению водородом с последующим увеличением размера кристаллитов никеля, уменьшением дисперсности и потерей ак-

тивности катализатора [36]. Как показали результаты наших предварительных исследований, частицы никеля, синтезируемые *in situ* в среде 1,4-дихлорбензола из 2-этилгексаноата никеля, проявляют высокую активность в реакции гидродехлорирования. Представляет интерес и установление стабильности активности никеля и фосфидов никеля в условиях гидродехлорирования. Сравнение состава продуктовой смеси и степени дехлорирования для никеля и фосфидов никеля в пяти циклах реакции (рис. 5) показало, что нефосфидированный никель проявляет высокую каталитическую активность в первых трех циклах реакции, после чего наблюдается резкое снижение степени дехлорирования вследствие образования NiCl₂. Фосфид никеля характеризуется невысокой активностью в первом цикле, вероятно, ввиду кинетических ограничений формирования фазы Ni₂P, тогда как на втором цикле реакции активность значительно возрастает и сохраняется в течение пяти циклов.

Различие стабильности рассмотренных катализаторов можно объяснить наличием частичного положительного заряда на атоме никеля в фосфидах никеля, тогда как металлический никель, очевидно, такой заряд не несет. Хлор является акцептором электронов, а наличие частичного положительного заряда на атоме никеля ослабляет взаимодействие хлора и никеля и благоприятствует десорбции хлора с поверхности каталитических частиц [19, 26]. Более того, атомы фосфора на поверхности катализатора проявляют «эффект ансамбля», создавая стерические затруднения для адсорбции хлора на атомах никеля [19]. Можно сделать вывод, что чем выше положительный заряд на атоме никеля, тем более устойчивым будет данный катализатор к дезактивации. Положительный заряд на атоме никеля возрастает в ряду фаз: $Ni_2P > Ni_{12}P_5 > Ni_3P$ [37], поэтому и фаза Ni₂P является предпочтительной для катализаторов гидродехлорирования [19].

Таблица 1. Изменение состава смеси продуктов и степени дехлорирования от продолжительности эксперимента. Условия: температура 340°C, давление 6 МПа, молярное соотношение Ni/1,4-дихлорбензол = 1/60, Ni/красный фосфор = 1/20

Время, ч	Состав продуктовой смеси, мас. %			
	1,4-дихлорбензол	хлорбензол	бензол	Степень дехлорирования, %
0	100	0	0	0
1	64	27	9	19
3	47	35	18	30
7	22	51	27	44
14	6	42	52	66

Рис. 5. Сравнение состава продуктовой смеси и степени дехлорирования в пяти циклах реакции для: a — никеля; δ — фосфидов никеля. Условия: температура 340°C, давление 6 МПа, мольное соотношение Ni/1,4-дихлорбензол = 1/60, Ni/красный фосфор = 1/10.

ВЫВОДЫ

Можно заключить, что красный фосфор является возможным и перспективным источником фосфора при синтезе фосфидов никеля in situ и может рассматриваться как альтернатива органическим фосфинам. Наиболее оптимальными условиями синтеза катализатора и гидродехлорирования 1,4-дихлорбензола являются температура 360-380°С и давление 6-8 МПа. Активность фосфидов никеля, полученных in situ, сохраняется в течение пяти циклов реакции, возрастая на втором цикле вследствие кинетических ограничений процесса фосфидирования никеля. В то же время, нефосфидированный никель проявляет высокую каталитическую активность только в первых трех циклах реакции, после чего наблюдается резкое снижение степени дехлорирования. Катализатор, синтезируемый в отсутствие источника фосфора, не содержит фазы никеля и оксида никеля, в его составе преобладают фазы хлорида никеля и его гидратов, что является причиной резкой потери активности этого катализатора при повторном использовании. Таким образом, синтезируемые in situ фосфиды никеля можно рассматривать как потенциально перспективные катализаторы

гидродехлорирования, в первую очередь благодаря их устойчивости к дезактивации.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда N 24-29-00401, https://rscf.ru/project/24-29-00401/

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования ЦКП «Аналитический центр проблем глубокой переработки нефти и нефтехимии» ИНХС РАН».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье

ИНФОРМАЦИЯ ОБ АВТОРАХ

Джабаров Эдуард Геннадьевич, м.н.с. ИНХС РАН ORCID: https://orcid.org/0000-0001-5490-8610

 Π етрухина Наталья Николаевна, к.т.н., с.н.с. ИНХС РАН

ORCID: https://orcid.org/0000-0001-8850-2141

СПИСОК ЛИТЕРАТУРЫ

- 1. Wang A., Ruan L., Teng Y., Li X., Lu M., Ren J., Wang Y., Hu Y. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts // J. Catal. 2005. V. 229. № 2. P. 314—321. https://doi.org/10.1016/j.jcat.2004.09.022
- 2. Bowker R.H., Savithra G.H.L., Carrillo B.A., Hubach K.G., McDonald T., Brock S.L., Bussell M.E. Effect of particle size on the sulfur resistance of nickel phosphide hydrodesulfurization catalysts // J. Catal. 2023. V. 425. P. 70–79. https://doi.org/10.1016/j.jcat.2023.06.007
- 3. *Nagai M., Fukiage T., Kurata Sh.* Hydrodesulfurization of dibenzothiophene over alumina-supported nickel molybdenum phosphide catalysts // Catal. Today. 2005. V. 106. N 1–4. P. 201–205.
 - https://doi.org/10.1016/j.cattod.2005.07.130
- 4. *Guan Q., Cheng X., Li R., Li W.* A feasible approach to the synthesis of nickel phosphide for hydrodesulfurization // J. Catal. 2013. V. 299. P. 1–9. https://doi.org/10.1016/j.jcat.2012.11.008
- 5. Oyama S.T., Wang X., Lee Y.-K., Bando K., Requejo F.G. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques // J. Catal. 2002. V. 210. N 1. P. 207–217. https://doi.org/10.1006/jcat.2002.3681
- 6. *Phillips D.C., Sawhill S.J., Self R., Bussell M.E.* Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts // J. Catal. 2002. V. 207. N 2. P. 266–273. https://doi.org/10.1006/jcat.2002.3524
- 7. *Rui Wang, Kevin J. Smith.* Hydrodesulfurization of 4,6-dimethyldibenzothiophene over high surface area metal phosphides // Appl. Catal. A: Gen. 2009. V. 361. N 1–2. P. 18–25.
 - https://doi.org/10.1016/j.apcata.2009.03.037
- Rodriguez J.A., Kim J.-Y., Hanson J.C. Physical and chemical properties of MoP, Ni₂P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies // J. Phys. Chem. B. 2003. V. 107. P. 6276–6285. https://doi.org/10.1021/jp022639q
- 9. Bowker R.H., Ilic B., Carrillo B.A., Reynolds M.A., Murray B.D., Bussell M.E. Carbazole hydrodenitrogenation over nickel phosphide and Ni-rich bimetallic phosphide catalysts // Appl. Catal. A: Gen. 2014. V. 482. P. 221–230.
 - https://doi.org/10.1016/j.apcata.2014.05.026

- 10. Wang R., Sun H., Liang M., Zhang H., Cui Q., Wang T., Yuan P. Flower-like nickel phosphide catalyst for petroleum resin hydrogenation with enhanced catalytic activity, hydrodesulfurization ability and stability // Chem. Eng. Sci. 2022. V. 264. ID 118180. https://doi.org/10.1016/j.ces.2022.118180
- De Souza P.M., Inocêncio C.V.M., Perez V.I., Rabelo-Neto R.C., Gonçalves V.O.O., Jacobs G., Richard F., Da Silva V.T., Noronha F.B. Hydrodeoxygenation of phenol using nickel phosphide catalysts. Study of the effect of the support // Catal. Today. 2020. V. 356. P. 366–375. https://doi.org/10.1016/j.cattod.2019.08.028
- 12. Alvarez-Galva M.C., Campos-Martin J.M., Fierro J.L.G. Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel // Catal. 2019. V. 9. N 3. P. 293. https://doi.org/10.3390/catal9030293
- 13. *Golubeva M.A.* In situ generated nickel phosphide based catalysts for hydroprocessing of levulinic acid // Petrol. Chemistry. 2021. V. 61. P. 670—675. https://doi.org/10.1134/S0965544121040022
- Kaewtrakulchai N., Smuthkochorn A., Manatura K., Panomsuwan G., Fuji M., Eiad-Ua A. Porous biochar supported transition metal phosphide catalysts for hydrocracking of palm oil to bio-jet fuel // Mater. 2022. V. 15. P. 6584. https://doi.org/10.3390/ma15196584
- Xiang D., Zhang B., Zhang H., Shen L. One-step synthesis of bifunctional nickel phosphide nanowires as electrocatalysts for hydrogen and oxygen evolution reactions // Front. Chem. 2021. V. 9. ID 773018. https://doi.org/10.3389/fchem.2021.773018
- 16. *McCueb Y.L.A.J.*, *Li D*. Metal phosphides and sulfides in heterogeneous catalysis: electronic and geometric effects // ACS Catal. 2021. V. 11. N 15. P. 9102–9127. https://doi.org/10.1021/acscatal.1c01718
- Chen J., Ci D., Wang R., Zhang J. Hydrodechlorination of chlorobenzene over NiB/SiO₂ and NiP/SiO₂ amorphous catalysts after being partially crystallized:
 A consideration of electronic and geometrical factors // Appl. Surf. Sci. 2008. V. 255. N 5. Part 2. P. 3300–3309. https://doi.org/10.1016/j.apsusc.2008.09.035.
- Chen J., Zhou J., Wang R., Zhang J. Preparation, characterization, and performance of HMS-supported Ni catalysts for hydrodechlorination of chorobenzene // Ind. Eng. Chem. Res. 2009. V. 48. P. 3802–3811. https://doi.org/10.1021/ie801792h
- Liu X., Chen J., Zhang J. Hydrodechlorination of chlorobenzene over silica-supported nickel phosphide catalysts // Ind. Eng. Chem. Res. 2008. V. 47. P. 5362– 5368.
 - https://doi.org/10.1021/ie7017542
- Guo T., Chen J., Li K. Promotion effect of steam treatment on activity of Ni₂P/SiO₂ for hydrodechlorination of chlorobenzene // Chin. J. Catal. 2012. V. 33. N 7. P. 1080–1085.
 - https://doi.org/10.1016/S1872-2067(11)60418-X

- Chen J., Zhou Sh., Ci D., Zhang J., Wang R., Zhang J.
 Influence of supports on structure and performance of
 nickel phosphide catalysts for hydrodechlorination of
 chlorobenzene // Ind. Eng. Chem. Res. 2009. V. 48.
 P. 3812–3819.
 https://doi.org/10.1021/ie8018643
- 22. *Yuan G., Bai J., Gao B., Ren L., Mei J., Zhang L.* The effect of crystal facet (3 1 2) exposure intensity of Ni₂P₅ nanoparticle on its hydrodechlorination catalytic activity // Inorg. Chem. Commun. 2020. V. 111. ID 107595. https://doi.org/10.1016/j.inoche.2019.107595
- Guo Q., Ren L. Hydrodechlorination of trichloroethylene over MoP/γ-Al₂O₃ catalyst with high surface // Catal. Today. 2016. V. 264. P. 158–162. https://doi.org/10.1016/j.cattod.2015.09.019
- 24. Zhang L., Yuan G., Bai J., Ren L. MoP@C supported on absorbent cotton as a highly efficient catalyst towards hydrodechlorination reaction // Z. Anorg. Allg. Chem. 2020. V. 646. P. 1611—1617. https://doi.org/10.1002/zaac.202000234
- 25. Cecilia J.A., Infantes-Molina A., Rodríguez-Castellón E., Jiménez-López A. Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents // J. Hazard. Mater. 2013. V. 260. P. 167–175. https://doi.org/10.1016/j.jhazmat.2013.05.013
- Chen J., Ci D., Yang Q., Li K. Deactivation of Ni₂P/SiO₂ catalyst in hydrodechlorination of chlorobenzene // Appl. Surf. Sci. 2014. V. 320. P. 643–652. https://doi.org/10.1016/j.apsusc.2014.09.127
- 27. *Dzhabarov E. G., Petrukhina N. N.* Hydrodechlorination of 1,4–dichlorobenzene over unsupported sulfide catalysts // Petrol Chemistry. 2022. V. 62. P. 1334–1342. https://doi.org/10.1134/S0965544122110032
- 28. Dzhabarov E.G., Petrukhina N.N., Zakharyan E.M. Hydrodechlorination of a two-component mixture of chloroaromatic compounds in the presence of an unsupported sulfide catalyst // Mend. Commun. 2023. V. 33. N 6. P. 839–840. https://doi.org/10.1016/j.mencom.2023.10.033
- Yuan G., Bai J., Lu Sh., Ren L., Gao B., Mei L., Ma Y., Chen X., Zhang L. MOFs-assisting synthesis 3D Ni₂P₅ catalyst for hydrodechlorination of trichloroethylene // ChemistrySelect. 2019. V. 4. P. 950–955. https://doi.org/10.1002/slct.201803443

- 30. *Xu H., Lu Sh., Ren L.* The regulatory effect of polyvinyl pyrrolidone on the microstructure and catalytic activity of nickel phosphides // Int. J. Hydrogen Energy. 2017. V. 42. N 29. P. 18383–18388. https://doi.org/10.1016/j.ijhydene.2017.04.133
- 31. Cecilia J.A., Jiménez-Morales I., Infantes-Molina A., Rodríguez-Castellón E., Jiménez-López A. Influence of the silica support on the activity of Ni and Ni₂P based catalysts in the hydrodechlorination of chlorobenzene. Study of factors governing catalyst deactivation // J. Molec. Catal. A: Chem. 2013. V. 368–369 (?). P. 78–87. https://doi.org/10.1016/j.molcata.2012.11.017
- 32. *Inocencio C.V.M.*, *De Souza P.M.*, *Rabelo-Neto R.C.*, *Da Silva V.T.*, *Noronha F.B.* A systematic study of the synthesis of transition metal phosphides and their activity for hydrodeoxygenation of phenol // Catal. Today. 2021. V. 381. P. 133–142. https://doi.org/10.1016/j.cattod.2020.07.077
- 33. *Yan J.S., Liu H.B., E Y.S., He F.W.* Hydrothermal synthesis and photocatalytic degradation ability of nickel phosphide micro/nano materials // IOP Conf. Series: Mater. Sci. Eng. 2018. V. 292. ID 012119. https://doi.org/10.1088/1757-899X/292/1/012119
- 34. *Zhou Sh., Chen J., Liu X., Zhang J.* Influence of reduction conditions on the catalytic activity of Ni₂P/SiO₂ for gas-phase hydrodechlorination of chlorobenzene // Chin. J. Catal. 2007. V. 28. N 6. P. 498–500. https://doi.org/10.1016/S1872-2067(07)60044-8
- 35. *Lan X.*, *Pestman R.*, *Hensen E.J.M.*, *Weber T.* Furfural hydrodeoxygenation (HDO) over silicasupported metal phosphides the influence of metal phosphorus stoichiometry on catalytic properties // J. Catal. 2021. V. 403. P. 181–193. https://doi.org/10.1016/j.jcat.2021.01.031
- 36. Veriansyah B., Choi H.-M., Lee Y.-W., Kang J.W Kim J.-D., Kim J. Continuous catalytic hydrodechlorination of polychlorinated biphenyls (PCBs) in transformer oil // J. Environm. Sci. Health Part A. 2009. V. 44. N 14. P. 1538—1544. https://doi.org/10.1080/10934520903263421
- 37. Yu Zh., Yao K., Wang Y., Yao Y., Sun Zh., Liu Y., Shi Ch., Wang W., Wang A. Kinetic investigation of phenol hydrodeoxygenation over unsupported nickel phosphides // Catal. Today. 2021. V. 371. N 1. P. 179–188.
 - https://doi.org/10.1016/j.cattod.2020.06.006